Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Adversarial Examples with Better Transferability via Masking Unimportant Parameters of Surrogate Model (2304.06908v1)

Published 14 Apr 2023 in cs.LG, cs.CR, and cs.CV

Abstract: Deep neural networks (DNNs) have been shown to be vulnerable to adversarial examples. Moreover, the transferability of the adversarial examples has received broad attention in recent years, which means that adversarial examples crafted by a surrogate model can also attack unknown models. This phenomenon gave birth to the transfer-based adversarial attacks, which aim to improve the transferability of the generated adversarial examples. In this paper, we propose to improve the transferability of adversarial examples in the transfer-based attack via masking unimportant parameters (MUP). The key idea in MUP is to refine the pretrained surrogate models to boost the transfer-based attack. Based on this idea, a Taylor expansion-based metric is used to evaluate the parameter importance score and the unimportant parameters are masked during the generation of adversarial examples. This process is simple, yet can be naturally combined with various existing gradient-based optimizers for generating adversarial examples, thus further improving the transferability of the generated adversarial examples. Extensive experiments are conducted to validate the effectiveness of the proposed MUP-based methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dingcheng Yang (15 papers)
  2. Wenjian Yu (34 papers)
  3. Zihao Xiao (18 papers)
  4. Jiaqi Luo (10 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.