Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduce API Debugging Overhead via Knowledge Prepositioning (2304.06692v1)

Published 23 Mar 2023 in cs.SE

Abstract: OpenAPI indicates a behavior where producers offer Application Programming Interfaces (APIs) to help end-users access their data, resources, and services. Generally, API has many parameters that need to be entered. However, it is challenging for users to understand and document these parameters correctly. This paper develops an API workbench to help users learn and debug APIs. Based on this workbench, much exploratory work has been proposed to reduce the overhead of learning and debugging APIs. We explore the knowledge, such as parameter characteristics (e.g., enumerability) and constraints (e.g., maximum/minimum value), from the massive API call logs to narrow the range of parameter values. Then, we propose a fine-grained approach to enrich the API documentation by extracting dependency knowledge between APIs. Finally, we present a learning-based prediction method to predict API execution results before the API is called, significantly reducing user debugging cycles. The experiments evaluated on the online system show that this work's approach substantially improves the user experience of debugging OpenAPIs.

Summary

We haven't generated a summary for this paper yet.