Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Low-Complexity Memoryless Linearizer for Analog-to-Digital Interfaces (2304.05849v1)

Published 12 Apr 2023 in eess.SP

Abstract: This paper introduces a low-complexity memoryless linearizer for suppression of distortion in analog-to-digital interfaces. It is inspired by neural networks, but has a substantially lower complexity than the neural-network schemes that have appeared earlier in the literature in this context. The paper demonstrates that the proposed linearizer can outperform the conventional parallel memoryless Hammerstein linearizer even when the nonlinearities have been generated through a memoryless polynomial model. Further, a design procedure is proposed in which the linearizer parameters are obtained through matrix inversion. Thereby, the costly and time consuming numerical optimization that is traditionally used when training neural networks is eliminated. Moreover, the design and evaluation incorporate a large set of multi-tone signals covering the first Nyquist band. Simulations show signal-to-noise-and-distortion ratio (SNDR) improvements of some 25 dB for multi-tone signals that correspond to the quadrature parts of OFDM signals with QPSK modulation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube