Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Gradient-Free Textual Inversion (2304.05818v1)

Published 12 Apr 2023 in cs.CV

Abstract: Recent works on personalized text-to-image generation usually learn to bind a special token with specific subjects or styles of a few given images by tuning its embedding through gradient descent. It is natural to question whether we can optimize the textual inversions by only accessing the process of model inference. As only requiring the forward computation to determine the textual inversion retains the benefits of less GPU memory, simple deployment, and secure access for scalable models. In this paper, we introduce a \emph{gradient-free} framework to optimize the continuous textual inversion in an iterative evolutionary strategy. Specifically, we first initialize an appropriate token embedding for textual inversion with the consideration of visual and text vocabulary information. Then, we decompose the optimization of evolutionary strategy into dimension reduction of searching space and non-convex gradient-free optimization in subspace, which significantly accelerates the optimization process with negligible performance loss. Experiments in several applications demonstrate that the performance of text-to-image model equipped with our proposed gradient-free method is comparable to that of gradient-based counterparts with variant GPU/CPU platforms, flexible employment, as well as computational efficiency.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.