Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Globally Optimal Consensus Maximization in Geometric Vision (2304.05156v3)

Published 11 Apr 2023 in cs.CV

Abstract: Branch-and-bound-based consensus maximization stands out due to its important ability of retrieving the globally optimal solution to outlier-affected geometric problems. However, while the discovery of such solutions caries high scientific value, its application in practical scenarios is often prohibited by its computational complexity growing exponentially as a function of the dimensionality of the problem at hand. In this work, we convey a novel, general technique that allows us to branch over an n-1 dimensional space for an n-dimensional problem. The remaining degree of freedom can be solved globally optimally within each bound calculation by applying the efficient interval stabbing technique. While each individual bound derivation is harder to compute owing to the additional need for solving a sorting problem, the reduced number of intervals and tighter bounds in practice lead to a significant reduction in the overall number of required iterations. Besides an abstract introduction of the approach, we present applications to four fundamental geometric computer vision problems: camera resectioning, relative camera pose estimation, point set registration, and rotation and focal length estimation. Through our exhaustive tests, we demonstrate significant speed-up factors at times exceeding two orders of magnitude, thereby increasing the viability of globally optimal consensus maximizers in online application scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
  2. H. Li, “Consensus set maximization with guaranteed global optimality for robust geometry estimation,” in Proceedings of the International Conference on Computer Vision (ICCV).   IEEE, 2009, pp. 1074–1080.
  3. T.-J. Chin, P. Purkait, A. Eriksson, and D. Suter, “Efficient globally optimal consensus maximisation with tree search,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).   Boston, MA, USA: IEEE, 2015, pp. 2413–2421.
  4. Z. Cai, T.-J. Chin, H. Le, and D. Suter, “Deterministic consensus maximization with biconvex programming,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 685–700.
  5. L. Kneip and P. Furgale, “Opengv: A unified and generalized approach to real-time calibrated geometric vision,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 1–8.
  6. P. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application to Estimating Image Geometry,” Computer Vision and Image Understanding (CVIU), vol. 78, no. 1, pp. 138–156, 2000.
  7. D. Nistér, “Preemptive ransac for live structure and motion estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2003, pp. 199––206.
  8. O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac,” in In Joint Pattern Recognition Symposium, 2003.
  9. A. Chum and J. Matas, “Matching with PROSAC – Progressive Sample Consensus,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
  10. D. Barath and J. Matas, “Graph-cut ransac,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6733–6741.
  11. C. Olsson, F. Kahl, and M. Oskarsson, “Optimal estimation of perspective camera pose,” in Proceedings of the International Conference on Pattern Recognition (ICPR), Hong Kong, China, 2006.
  12. R. Hartley and F. Kahl, “Global optimization through searching rotation space and optimal estimation of the essential matrix,” in Proceedings of the International Conference on Computer Vision (ICCV), 2007.
  13. ——, “Global optimization through rotation space search,” International Journal of Computer Vision (IJCV), vol. 82, pp. 64–79, 2009.
  14. C. Olsson, F. Kahl, and M. Oskarsson, “Branch and bound methods for euclidean registration problems,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 31, no. 5, pp. 783–794, 2008.
  15. J. Briales, L. Kneip, and J. Gonzalez-Jimenez, “A certifiably globally optimal solution to the non-minimal relative pose problem,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, US, 2018.
  16. J. Zhao, W. Xu, and L. Kneip, “A certifiably globally optimal solution to generalized essential matrix estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020.
  17. F. Kahl, S. Agarwal, M. Chandraker, D. Kriegman, and S. Belongie, “Practical global optimization for multiview geometry,” International Journal of Computer Vision (IJCV), vol. 79, no. 3, pp. 271–284, 2008.
  18. J. Bazin, Y. Seo, and M. Pollefeys, “Globally optimal consensus set maximization through rotation search,” in Proceedings of the Asian Conference on Computer Vision (ACCV).   Springer, 2012, pp. 539–551.
  19. J. Bazin, Y. Seo, R. Hartley, and M. Pollefeys, “Globally optimal inlier set maximization with unknown rotation and focal length,” in Proceedings of the European Conference on Computer Vision (ECCV), 2014.
  20. H. Li, P. Kim, J. Zhao, K. Joo, Z. Cai, Z. Liu, and Y.-H. Liu, “Globally optimal and efficient vanishing point estimation in atlanta world,” in Proceedings of the European Conference on Computer Vision (ECCV).   Springer, 2020, pp. 153–169.
  21. J. Yang, H. Li, and Y. Jia, “Optimal essential matrix estimation via inlier-set maximization,” in Proceedings of the European Conference on Computer Vision (ECCV), 2014.
  22. A. Bustos and T.-J. Chin, “Guaranteed outlier removal for point cloud registration with correspondences,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 40, no. 12, pp. 2868–2882, 2017.
  23. P. Speciale, D. Paudel, M. Oswald, T. Kroeger, L. Van Gool, and M. Pollefeys, “Consensus maximization with linear matrix inequality constraints,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4941–4949.
  24. Y. Liu, G. Chen, R. Gu, and A. Knoll, “Globally Optimal Consensus Maximization for Relative Pose Estimation With Known Gravity Direction,” vol. 6, no. 3, pp. 5905–5912, 2021.
  25. Y. Jiao, Y. Wang, X. Ding, M. Wang, and R. Xiong, “Deterministic Optimality for Robust Vehicle Localization Using Visual Measurements,” IEEE Transactions on Intelligent Transporation Systems (ITS), pp. 1–14, 2021.
  26. H. Liu, G. Chen, Y. Liu, Z. Liang, R. Zhang, and A. Knoll, “Globally-optimal inlier maximization for relative pose estimation under planar motion,” Frontiers in Neurorobotics, vol. 16, 2022.
  27. Y. Jiao, Y. Wang, B. Fu, Q. Tan, L. Chen, M. Wang, S. Huang, and R. Xiong, “Globally optimal consensus maximization for robust visual inertial localization in point and line map,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, pp. 4631–4638.
  28. T. Breuel, “Implementation techniques for geometric branch-and-bound matching methods,” Computer Vision and Image Understanding (CVIU), vol. 90, no. 3, pp. 258–294, 2003.
  29. J. Yang, H. Li, and Y. Jia, “Go-ICP: Solving 3D Registration Efficiently and Globally Optimally,” in Proceedings of the International Conference on Computer Vision (ICCV), 2013.
  30. J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 38, no. 11, pp. 2241–2254, 2016.
  31. A. Bustos, T.-J. Chin, and D. Suter, “Fast rotation search with stereographic projections for 3d registration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 3930–3937.
  32. Y. Liu, C. Wang, Z. Song, and M. Wang, “Efficient global point cloud registration by matching rotation invariant features through translation search,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 448–463.
  33. H. Yang and L. Carlone, “A polynomial-time solution for robust registration with extreme outlier rates,” arXiv preprint arXiv:1903.08588, 2019.
  34. H. Yang, J. Shi, and L. Carlone, “Teaser: Fast and certifiable point cloud registration,” IEEE Transactions on Robotics (T-RO), vol. 37, no. 2, pp. 314–333, 2020.
  35. Z. Cai, T.-J. Chin, A. Bustos, and K. Schindler, “Practical optimal registration of terrestrial lidar scan pairs,” ISPRS journal of photogrammetry and remote sensing, vol. 147, pp. 118–131, 2019.
  36. L. Peng, M. Tsakiris, and R. Vidal, “Arcs: Accurate rotation and correspondence search,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 11 153–11 163.
  37. D. Campbell, L. Petersson, L. Kneip, and H. Li, “Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence,” in Proceedings of the International Conference on Computer Vision (ICCV), 2017, pp. 1–10.
  38. D. Campbell, L. Petersson, L. Kneip, , and H. Li, “Globally-optimal inlier set maximisation for camera pose and correspondence estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 42, pp. 328–342, 2020.
  39. D. Campbell, L. Petersson, L. Kneip, H. Li, and S. Gould, “The alignment of the spheres: Globally-optimal spherical mixture alignment for camera pose estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  40. L. Hu and L. Kneip, “Globally optimal point set registration by joint symmetry plane fitting,” Journal of Mathematical Imaging and Vision (JMIV), vol. 63, pp. 689–707, 2021.
  41. L. Gao, J. Su, J. Cui, X. Zeng, X. Peng, and L. Kneip, “Efficient globally-optimal correspondence-less visual odometry for planar ground vehicles,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2020.
  42. X. Peng, Y. Wang, L. Gao, and L. Kneip, “Globally-optimal event camera motion estimation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2020.
  43. X. Peng, L. Gao, Y. Wang, and L. Kneip, “Globally-optimal contrast maximisation for event cameras,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 44, no. 7, pp. 3479–3495, 2021.
  44. Z. Cai, T.-J. Chin, and V. Koltun, “Consensus Maximization Tree Search Revisited,” in Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 1637–1645.
  45. Z. Cai, “Consensus Maximization: Theoretical Analysis and New Algorithms,” Ph.D. dissertation, University of Adelaide, 2020.
  46. T.-J. Chin, Z. Cai, and F. Neumann, “Robust fitting in computer vision: Easy or hard?” International Journal of Computer Vision (IJCV), vol. 128, no. 3, pp. 575–587, 2020.
  47. M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf, “Computational geometry,” in Computational geometry.   Springer, 1997, pp. 1–17.
  48. J. Clausen, “Branch and bound algorithms-principles and examples,” Department of Computer Science, University of Copenhagen, pp. 1–30, 1999.
  49. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.
  50. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, pp. 91–110, 2004.
  51. B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996, pp. 303–312.
  52. F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp variants on real-world data sets: Open-source library and experimental protocol,” Autonomous Robots, vol. 34, pp. 133–148, 2013.
  53. Z. Zhang, C. Fu, C. Dong, C. Mertz, and J. M. Dolan, “Self-calibration of multiple lidars for autonomous vehicles,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   IEEE, 2021, pp. 2897–2902.
  54. M. Brown, R. I. Hartley, and D. Nistér, “Minimal solutions for panoramic stitching,” in 2007 IEEE conference on computer vision and pattern recognition.   IEEE, 2007, pp. 1–8.
  55. J.-C. Bazin, Y. Seo, R. Hartley, and M. Pollefeys, “Globally optimal inlier set maximization with unknown rotation and focal length,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13.   Springer, 2014, pp. 803–817.
Citations (6)

Summary

We haven't generated a summary for this paper yet.