Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic evolution of the error of numerical method for linear stochastic differential equation (2304.01602v2)

Published 4 Apr 2023 in math.NA and cs.NA

Abstract: The quantitative characterization of the evolution of the error distribution (as the step-size tends to zero) is a fundamental problem in the analysis of stochastic numerical method. In this paper, we answer this problem by proving that the error of numerical method for linear stochastic differential equation satisfies the limit theorems and large deviation principle. To the best of our knowledge, this is the first result on the quantitative characterization of the evolution of the error distribution of stochastic numerical method. As an application, we provide a new perspective to explain the superiority of symplectic methods for stochastic Hamiltonian systems in the long-time computation. To be specific, by taking the linear stochastic oscillator as the test equation, we show that in the long-time computation, the probability that the error deviates from the typical value is smaller for the symplectic methods than that for the non-symplectic methods, which reveals that the stochastic symplectic methods are more stable than non-symplectic methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.