Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 31 tok/s Pro
GPT-4o 112 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 211 tok/s Pro
2000 character limit reached

Differentiable programming tensor networks for Kitaev magnets (2304.01551v4)

Published 4 Apr 2023 in physics.comp-ph and cond-mat.str-el

Abstract: We present a general computational framework to investigate ground state properties of quantum spin models on infinite two-dimensional lattices using automatic differentiation-based gradient optimization of infinite projected entangled-pair states. The approach exploits the variational uniform matrix product states to contract infinite tensor networks with unit-cell structure and incorporates automatic differentiation to optimize the local tensors. We applied this framework to the Kitaev-type model, which involves complex interactions and competing ground states. To evaluate the accuracy of this method, we compared the results with exact solutions for the Kitaev model and found that it has a better agreement for various observables compared to previous tensor network calculations based on imaginary-time projection. Additionally, by finding out the ground state with lower variational energy compared to previous studies, we provided convincing evidence for the existence of nematic paramagnetic phases and 18-site configuration in the phase diagram of the $K$-$\Gamma$ model. Furthermore, in the case of the realistic $K$-$J$-$\Gamma$-$\Gamma'$ model for the Kitaev material $\alpha$-RuCl$_3$, we discovered a non-colinear zigzag ground state. Lastly, we also find that the strength of the critical out-of-plane magnetic field that suppresses such a zigzag state has a lower transition field value than the previous finite-cylinder calculations. The framework is versatile and will be useful for a quick scan of phase diagrams for a broad class of quantum spin models.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube