A paradigm for well-balanced schemes for traveling waves emerging in parabolic biological models (2304.00826v1)
Abstract: We propose a methodology for designing well-balanced numerical schemes to investigate traveling waves in parabolic models from mathematical biology. We combine well-balanced techniques for parabolic models known in the literature with the so-called LeVeque-Yee formula as a dynamic estimate for the spreading speed. This latter formula is used to consider the evolution problem in a moving frame at each time step, where the equations admit stationary solutions, for which well-balanced techniques are suitable. Then, the solution is shifted back to the stationary frame in a well-balanced manner. We illustrate this methodology on parabolic reaction-diffusion equations, such as the Fisher/Kolmogorov-Petrovsky-Piskunov Equation, and a class of equations with a cubic reaction term that exhibit a transition from pulled to pushed waves. We show that the numerical schemes capture in a consistent way simultaneously the wave speed and, to an extent, the so-called Bramson delay.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.