Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal approximation of flows of control systems by recurrent neural networks (2304.00352v2)

Published 1 Apr 2023 in eess.SY and cs.SY

Abstract: We consider the problem of approximating flow functions of continuous-time dynamical systems with inputs. It is well-known that continuous-time recurrent neural networks are universal approximators of this type of system. In this paper, we prove that an architecture based on discrete-time recurrent neural networks universally approximates flows of continuous-time dynamical systems with inputs. The required assumptions are shown to hold for systems whose dynamics are well-behaved ordinary differential equations and with practically relevant classes of input signals. This enables the use of off-the-shelf solutions for learning such flow functions in continuous-time from sampled trajectory data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.