Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

DHR bimodules of quasi-local algebras and symmetric quantum cellular automata (2304.00068v3)

Published 31 Mar 2023 in math-ph, math.MP, math.OA, math.QA, and quant-ph

Abstract: For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a lattice $L\subseteq \mathbb{R}{n}$ satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebras $A$ of operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric quantum cellular automata (QCA) to $\textbf{Aut}{br}(\textbf{DHR}(A))$, containing symmetric finite depth circuits in the kernel. For a spin chain with fusion categorical symmetry $\mathcal{D}$, we show the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center $\mathcal{Z}(\mathcal{D})$ . We use this to show that for the double spin flip action $\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\curvearrowright \mathbb{C}{2}\otimes \mathbb{C}{2}$, the group of symmetric QCA modulo symmetric finite depth circuits in 1D contains a copy of $S{3}$, hence is non-abelian, in contrast to the case with no symmetry.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)