Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Avian-Inspired Claws Enable Robot Perching or Walking (2303.17057v3)

Published 29 Mar 2023 in cs.RO

Abstract: Multimodal UAVs (Unmanned Aerial Vehicles) are rarely capable of more than two modalities, i.e., flying and walking or flying and perching. However, being able to fly, perch, and walk could further improve their usefulness by expanding their operating envelope. For instance, an aerial robot could fly a long distance, perch in a high place to survey the surroundings, then walk to avoid obstacles that could potentially inhibit flight. Birds are capable of these three tasks, and so offer a practical example of how a robot might be developed to do the same. In this paper, we present a specialized avian-inspired claw design to enable UAVs to perch passively or walk. The key innovation is the combination of a Hoberman linkage leg with Fin Ray claw that uses the weight of the UAV to wrap the claw around a perch, or hyperextend it in the opposite direction to form a curved-up shape for stable terrestrial locomotion. Because the design uses the weight of the vehicle, the underactuated design is lightweight and low power. With the inclusion of talons, the 45g claws are capable of holding a 700g UAV to an almost 20-degree angle on a perch. In scenarios where cluttered environments impede flight and long mission times are required, such a combination of flying, perching, and walking is critical.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. C. E. Doyle, J. J. Bird, T. A. Isom, J. C. Kallman, D. F. Bareiss, D. J. Dunlop, R. J. King, J. J. Abbott, and M. A. Minor, “An Avian-Inspired Passive Mechanism for Quadrotor Perching,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 506–517, Apr. 2013.
  2. M. Tieu, D. M. Michael, J. B. Pflueger, M. S. Sethi, K. N. Shimazu, T. M. Anthony, and C. L. Lee, “Demonstrations of Bio-Inspired Perching Landing Gear for UAVs,” in Proc. SPIE 9797, Bioinspiration, Biomimetics, and Bioreplication 2016, 2016.
  3. A. McLaren, Z. Fitzgerald, G. Gao, and M. Liarokapis, “A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 2019, pp. 5602–5607.
  4. M. T. Pope, C. W. Kimes, H. Jiang, E. W. Hawkes, M. A. Estrada, C. F. Kerst, W. R. T. Roderick, A. K. Han, D. L. Christensen, and M. R. Cutkosky, “A Multimodal Robot for Perching and Climbing on Vertical Outdoor Surfaces,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 38–48, Dec. 2016.
  5. Y. H. Hsiao and P. Chirarattananon, “Ceiling Effects for Hybrid Aerial–Surface Locomotion of Small Rotorcraft,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2316–2327, Oct. 2019.
  6. K. Hang, X. Lyu, H. Song, J. A. Stork, A. M. Dollar, D. Kragic, and F. Zhang, “Perching and resting—a paradigm for uav maneuvering with modularized landing gears,” Science Robotics, vol. 4, no. 28, p. eaau6637, 2019.
  7. E. W. Hawkes, D. L. Christensen, E. V. Eason, M. A. Estrada, M. Heverly, E. Hilgemann, H. Jiang, M. T. Pope, A. Parness, and M. R. Cutkosky, “Dynamic Surface Grasping with Directional Adhesion,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 5487–5493.
  8. M. A. Graule, P. Chirarattananon, S. B. Fuller, N. T. Jafferis, K. Y. Ma, M. Spenko, R. Kornbluh, and R. J. Wood, “Perching and Takeoff of a Robotic Insect on Overhangs Using Switchable Electrostatic Adhesion,” Science, vol. 352, no. 6288, pp. 978–982, 2016.
  9. M. Anderson, “The Sticky-Pad Plane and Other Innovative Concepts for Perching UAVs,” in 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009.
  10. K. Zhang, P. Chermprayong, T. M. Alhinai, R. Siddall, and M. Kovac, “SpiderMAV: Perching and Stabilizing Micro Aerial Vehicles with Bio-Inspired Tensile Anchoring Systems,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 6849–6854.
  11. W. Stewart, L. Guarino, Y. Piskarev, and D. Floreano, “Passive perching with energy storage for winged aerial robots,” Advanced Intelligent Systems, vol. 5, no. 4, p. 2100150, 2021.
  12. R. Zufferey, J. Tormo-Barbero, D. Feliu-Talegón, S. R. Nekoo, J. A. Acosta, and A. Ollero, “How ornithopters can perch autonomously on a branch,” Nature Communications, vol. 13, no. 1, p. 7713, Dec. 2022, number: 1 Publisher: Nature Publishing Group.
  13. C. J. Pratt and K. K. Leang, “Dynamic underactuated flying-walking (DUCK) robot,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 3267–3274.
  14. K. Kim, P. Spieler, E.-S. Lupu, A. Ramezani, and S.-J. Chung, “A bipedal walking robot that can fly, slackline, and skateboard,” Science Robotics, vol. 6, no. 59, p. eabf8136, Oct. 2021.
  15. O. Pfaff, S. Simeonov, I. Cirovic, P. Stano et al., “Application of fin ray effect approach for production process automation,” Annals of DAAAM & Proceedings, vol. 22, no. 1, pp. 1247–1249, 2011.
  16. W. R. Roderick, D. D. Chin, M. R. Cutkosky, and D. Lentink, “Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact,” eLife, vol. 8, p. e46415, Aug. 2019.
  17. W. D. Shin, J. Park, and H.-W. Park, “Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion,” Bioinspiration & Biomimetics, vol. 14, no. 5, p. 056009, Jul. 2019.
  18. L. Daler, S. Mintchev, C. Stefanini, and D. Floreano, “A bioinspired multi-modal flying and walking robot,” Bioinspiration & Biomimetics, vol. 10, no. 1, p. 016005, Jan. 2015.
  19. F. Boria, R. Bachmann, P. Ifju, R. Quinn, R. Vaidyanathan, C. Perry, and J. Wagener, “A sensor platform capable of aerial and terrestrial locomotion,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, pp. 3959–3964.
  20. A. Kalantari and M. Spenko, “Design and experimental validation of HyTAQ, a Hybrid Terrestrial and Aerial Quadrotor,” in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 4445–4450.
  21. H. Wang, J. Shi, J. Wang, H. Wang, Y. Feng, and Y. You, “Design and Modeling of a Novel Transformable Land/Air Robot,” International Journal of Aerospace Engineering, vol. 2019, p. e2064131, Feb. 2019.
  22. R. Käslin, H. Kolvenbach, L. Paez, K. Lika, and M. Hutter, “Towards a passive adaptive planar foot with ground orientation and contact force sensing for legged robots,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 2707–2714.
  23. P. M. Galton and J. D. Shepherd, “Experimental analysis of perching in the european starling (sturnus vulgaris: Passeriformes; passeres), and the automatic perching mechanism of birds,” Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, vol. 317, no. 4, pp. 205–215, 2012.
  24. P. M. Nadan, T. M. Anthony, D. M. Michael, J. B. Pflueger, M. S. Sethi, K. N. Shimazu, M. Tieu, and C. L. Lee, “A bird-inspired perching landing gear system,” Journal of Mechanisms and Robotics, vol. 11, no. 6, 2019.
  25. W. Chi, K. H. Low, K. H. Hoon, J. Tang, and T. H. Go, “A bio-inspired adaptive perching mechanism for unmanned aerial vehicles,” Journal of Robotics and Mechatronics, vol. 24, no. 4, pp. 642–648, 2012.
  26. X. Shan and L. Birglen, “Modeling and analysis of soft robotic fingers using the fin ray effect,” The International Journal of Robotics Research, vol. 39, no. 14, pp. 1686–1705, 2020.
  27. C. I. Basson and G. Bright, “Geometric conformity study of a fin ray gripper utilizing active haptic control,” in 2019 IEEE 15th International Conference on Control and Automation (ICCA).   IEEE, 2019, pp. 713–718.
  28. K. Elgeneidy, P. Lightbody, S. Pearson, and G. Neumann, “Characterising 3d-printed soft fin ray robotic fingers with layer jamming capability for delicate grasping,” in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).   IEEE, 2019, pp. 143–148.
  29. E. Culler, G. Thomas, and C. Lee, “A perching landing gear for a quadcopter,” in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1722.
  30. W. Crooks, S. Rozen-Levy, B. Trimmer, C. Rogers, and W. Messner, “Passive gripper inspired by manduca sexta and the fin ray® effect,” International Journal of Advanced Robotic Systems, vol. 14, no. 4, p. 1729881417721155, 2017.
  31. K. C. V. Broers and S. F. Armanini, “Design and Testing of a Bioinspired Lightweight Perching Mechanism for Flapping-Wing MAVs Using Soft Grippers,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7526–7533, Jul. 2022.
  32. M. L. Burroughs, K. Beauwen Freckleton, J. J. Abbott, and M. A. Minor, “A sarrus-based passive mechanism for rotorcraft perching,” Journal of Mechanisms and Robotics, vol. 8, no. 1, 2016.
  33. C. Hoberman, “Radial expansion/retraction truss structures,” US Patent US5 024 031A, Jun., 1991.
  34. K. D. Kavanagh, O. Shoval, B. B. Winslow, U. Alon, B. P. Leary, A. Kan, and C. J. Tabin, “Developmental bias in the evolution of phalanges,” Proceedings of the National Academy of Sciences, vol. 110, no. 45, pp. 18 190–18 195, 2013.
  35. J. Pratt and G. Pratt, “Intuitive control of a planar bipedal walking robot,” in Proceedings. 1998 IEEE international conference on robotics and automation (Cat. No. 98CH36146), vol. 3.   IEEE, 1998, pp. 2014–2021.
  36. C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate, and J. Hurst, “Atrias: Design and validation of a tether-free 3d-capable spring-mass bipedal robot,” The International Journal of Robotics Research, vol. 35, no. 12, pp. 1497–1521, 2016.
  37. W. D. Shin, W. Stewart, M. A. Estrada, A. J. Ijspeert, and D. Floreano, “Elastic-actuation mechanism for repetitive hopping based on power modulation and cyclic trajectory generation,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 558–571, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com