Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learnable Graph Matching: A Practical Paradigm for Data Association (2303.15414v2)

Published 27 Mar 2023 in cs.CV

Abstract: Data association is at the core of many computer vision tasks, e.g., multiple object tracking, image matching, and point cloud registration. however, current data association solutions have some defects: they mostly ignore the intra-view context information; besides, they either train deep association models in an end-to-end way and hardly utilize the advantage of optimization-based assignment methods, or only use an off-the-shelf neural network to extract features. In this paper, we propose a general learnable graph matching method to address these issues. Especially, we model the intra-view relationships as an undirected graph. Then data association turns into a general graph matching problem between graphs. Furthermore, to make optimization end-to-end differentiable, we relax the original graph matching problem into continuous quadratic programming and then incorporate training into a deep graph neural network with KKT conditions and implicit function theorem. In MOT task, our method achieves state-of-the-art performance on several MOT datasets. For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet. For point cloud registration, we also achieve competitive results. Code will be available at https://github.com/jiaweihe1996/GMTracker.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (116)
  1. H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
  2. E. L. Lawler, “The quadratic assignment problem,” Management Science, vol. 9, no. 4, pp. 586–599, 1963.
  3. T. C. Koopmans and M. Beckmann, “Assignment problems and the location of economic activities,” Econometrica, vol. 25, no. 1, pp. 53–76, 1957.
  4. B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a layer in neural networks,” in ICML, 2017.
  5. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017.
  6. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Int. Conf. Comput. Vis., 2017.
  7. J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking using k-shortest paths optimization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 9, pp. 1806–1819, 2011.
  8. A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in IEEE Int. Conf. Image Process., 2016.
  9. S. Wang and C. C. Fowlkes, “Learning optimal parameters for multi-target tracking with contextual interactions,” Int. J. Comput. Vis., vol. 122, no. 3, pp. 484–501, 2017.
  10. G. Brasó and L. Leal-Taixé, “Learning a neural solver for multiple object tracking,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020.
  11. Y. Xu, A. Osep, Y. Ban, R. Horaud, L. Leal-Taixé, and X. Alameda-Pineda, “How to train your deep multi-object tracker,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020.
  12. A. Hornakova, R. Henschel, B. Rosenhahn, and P. Swoboda, “Lifted disjoint paths with application in multiple object tracking,” in ICML, 2020.
  13. C.-H. Kuo and R. Nevatia, “How does person identity recognition help multi-person tracking?” in IEEE Conf. Comput. Vis. Pattern Recog., 2011.
  14. B. Yang and R. Nevatia, “An online learned CRF model for multi-target tracking,” in IEEE Conf. Comput. Vis. Pattern Recog., 2012.
  15. L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by tracking: Siamese CNN for robust target association,” in IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2016.
  16. N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in IEEE Int. Conf. Image Process., 2017.
  17. J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H. Yang, “Online multi-object tracking with dual matching attention networks,” in Eur. Conf. Comput. Vis., 2018.
  18. S. Sun, N. Akhtar, H. Song, A. S. Mian, and M. Shah, “Deep affinity network for multiple object tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 104–119, 2019.
  19. P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learning feature matching with graph neural networks,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020.
  20. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.
  21. D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised interest point detection and description,” in IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2018.
  22. A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017.
  23. Y. Bar-Shalom, T. E. Fortmann, and P. G. Cable, “Tracking and data association,” 1990.
  24. D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.
  25. S. Hamid Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid, “Joint probabilistic data association revisited,” in Int. Conf. Comput. Vis., 2015.
  26. C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking revisited,” in Int. Conf. Comput. Vis., 2015.
  27. F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people tracking with a probabilistic occupancy map,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 267–282, 2007.
  28. L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object tracking using network flows,” in IEEE Conf. Comput. Vis. Pattern Recog., 2008.
  29. B. Yang, C. Huang, and R. Nevatia, “Learning affinities and dependencies for multi-target tracking using a CRF model,” in IEEE Conf. Comput. Vis. Pattern Recog., 2011.
  30. A. R. Zamir, A. Dehghan, and M. Shah, “GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs,” in Eur. Conf. Comput. Vis., 2012.
  31. S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Subgraph decomposition for multi-target tracking,” in IEEE Conf. Comput. Vis. Pattern Recog., 2015.
  32. H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal greedy algorithms for tracking a variable number of objects,” in IEEE Conf. Comput. Vis. Pattern Recog., 2011.
  33. S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Multi-person tracking by multicut and deep matching,” in Eur. Conf. Comput. Vis., 2016.
  34. W. Choi, “Near-online multi-target tracking with aggregated local flow descriptor,” in Int. Conf. Comput. Vis., 2015.
  35. B. Wang, G. Wang, K. L. Chan, and L. Wang, “Tracklet association by online target-specific metric learning and coherent dynamics estimation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 3, pp. 589–602, 2016.
  36. A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable: Learning to track multiple cues with long-term dependencies,” in Int. Conf. Comput. Vis., 2017.
  37. J. Li, X. Gao, and T. Jiang, “Graph networks for multiple object tracking,” in WACV, 2020, pp. 719–728.
  38. X. Jiang, P. Li, Y. Li, and X. Zhen, “Graph neural based end-to-end data association framework for online multiple-object tracking,” arXiv preprint arXiv:1907.05315, 2019.
  39. S. Li, Y. Kong, and H. Rezatofighi, “Learning of global objective for network flow in multi-object tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8855–8865.
  40. W. Hu, X. Shi, Z. Zhou, J. Xing, H. Ling, and S. Maybank, “Dual L1-normalized context aware tensor power iteration and its applications to multi-object tracking and multi-graph matching,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 360–392, 2020.
  41. H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in Eur. Conf. Comput. Vis., 2006.
  42. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to sift or surf,” in Int. Conf. Comput. Vis., 2011.
  43. T. Tuytelaars and L. Van Gool, “Wide baseline stereo matching based on local, affinely invariant regions,” in Brit. Mach. Vis. Conf.   Citeseer, 2000.
  44. T. Sattler, B. Leibe, and L. Kobbelt, “Scramsac: Improving ransac’s efficiency with a spatial consistency filter,” in Int. Conf. Comput. Vis., 2009.
  45. M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler, “D2-net: A trainable cnn for joint detection and description of local features,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019.
  46. J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “LoFTR: Detector-free local feature matching with transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8922–8931.
  47. H. Deng, T. Birdal, and S. Ilic, “Ppfnet: Global context aware local features for robust 3d point matching,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 195–205.
  48. C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric features,” in Int. Conf. Comput. Vis., 2019, pp. 8958–8966.
  49. Z. Qin, H. Yu, C. Wang, Y. Guo, Y. Peng, and K. Xu, “Geometric transformer for fast and robust point cloud registration,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022.
  50. Y. Wang and J. M. Solomon, “Prnet: Self-supervised learning for partial-to-partial registration,” Advances in neural information processing systems, vol. 32, 2019.
  51. X. Huang, G. Mei, and J. Zhang, “Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 366–11 374.
  52. K. Fu, S. Liu, X. Luo, and M. Wang, “Robust point cloud registration framework based on deep graph matching,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 8893–8902.
  53. M. Vento and P. Foggia, “Graph matching techniques for computer vision,” in Image Processing: Concepts, Methodologies, Tools, and Applications, 2013, pp. 381–421.
  54. M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using pairwise constraints,” in Int. Conf. Comput. Vis., 2005.
  55. C. Schellewald and C. Schnörr, “Probabilistic subgraph matching based on convex relaxation,” in IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2005.
  56. P. H. Torr, “Solving markov random fields using semi definite programming.” in AISTATS, 2003.
  57. P. Swoboda, C. Rother, H. Abu Alhaija, D. Kainmuller, and B. Savchynskyy, “A study of Lagrangean decompositions and dual ascent solvers for graph matching,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017.
  58. F. Zhou and F. De la Torre, “Factorized graph matching,” in IEEE Conf. Comput. Vis. Pattern Recog., 2012.
  59. R. Wang, J. Yan, and X. Yang, “Learning combinatorial embedding networks for deep graph matching,” in Int. Conf. Comput. Vis., 2019.
  60. T. Yu, R. Wang, J. Yan, and B. Li, “Learning deep graph matching with channel-independent embedding and Hungarian attention,” in Int. Conf. Learn. Represent., 2020.
  61. S. Barratt, “On the differentiability of the solution to convex optimization problems,” arXiv preprint arXiv:1804.05098, 2018.
  62. Y. Aflalo, A. Bronstein, and R. Kimmel, “On convex relaxation of graph isomorphism,” Proceedings of the National Academy of Sciences, vol. 112, no. 10, pp. 2942–2947, 2015.
  63. A. Zanfir and C. Sminchisescu, “Deep learning of graph matching,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018.
  64. C. Ma, Y. Li, F. Yang, Z. Zhang, Y. Zhuang, H. Jia, and X. Xie, “Deep association: End-to-end graph-based learning for multiple object tracking with conv-graph neural network,” in ICMR, 2019.
  65. X. Weng, Y. Wang, Y. Man, and K. Kitani, “GNN3DMOT: Graph neural network for 3D multi-object tracking with 2D-3D multi-feature learning,” IEEE Conf. Comput. Vis. Pattern Recog., 2020.
  66. R. E. Kalman, “A new approach to linear filtering and prediction problems,” ASME Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
  67. G. Li, C. Xiong, A. Thabet, and B. Ghanem, “DeeperGCN: All you need to train deeper GCNs,” arXiv preprint arXiv:2006.07739, 2020.
  68. S. Diamond and S. Boyd, “CVXPY: A python-embedded modeling language for convex optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–2913, 2016.
  69. G. D. Evangelidis and E. Z. Psarakis, “Parametric image alignment using enhanced correlation coefficient maximization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10, pp. 1858–1865, 2008.
  70. A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A benchmark for multi-object tracking,” arXiv preprint arXiv:1603.00831, 2016.
  71. R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers, M. Boonstra, V. Korzhova, and J. Zhang, “Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 319–336, 2008.
  72. E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi, “Performance measures and a data set for multi-target, multi-camera tracking,” in Eur. Conf. Comput. Vis. Worksh., 2016.
  73. J. Luiten, A. Osep, P. Dendorfer, P. H. S. Torr, A. Geiger, L. Leal-Taixé, and B. Leibe, “HOTA: A higher order metric for evaluating multi-object tracking,” Int. J. Comput. Vis., vol. 129, no. 2, pp. 548–578, 2021.
  74. P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells and whistles,” in Int. Conf. Comput. Vis., 2019.
  75. I. Papakis, A. Sarkar, and A. Karpatne, “GCNNMatch: Graph convolutional neural networks for multi-object tracking via sinkhorn normalization,” arXiv preprint arXiv:2010.00067, 2020.
  76. Q. Liu, Q. Chu, B. Liu, and N. Yu, “GSM: Graph similarity model for multi-object tracking,” in IJCAI, 2020.
  77. X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in Eur. Conf. Comput. Vis., 2020.
  78. C. Kim, L. Fuxin, M. Alotaibi, and J. M. Rehg, “Discriminative appearance modeling with multi-track pooling for real-time multi-object tracking,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021.
  79. S. Guo, J. Wang, X. Wang, and D. Tao, “Online multiple object tracking with cross-task synergy,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021.
  80. F. Saleh, S. Aliakbarian, H. Rezatofighi, M. Salzmann, and S. Gould, “Probabilistic tracklet scoring and inpainting for multiple object tracking,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021.
  81. P. Dai, R. Weng, W. Choi, C. Zhang, Z. He, and W. Ding, “Learning a proposal classifier for multiple object tracking,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021.
  82. A. Hornakova, T. Kaiser, P. Swoboda, M. Rolinek, B. Rosenhahn, and R. Henschel, “Making higher order mot scalable: An efficient approximate solver for lifted disjoint paths,” in Int. Conf. Comput. Vis., 2021.
  83. B. Pang, Y. Li, Y. Zhang, M. Li, and C. Lu, “Tubetk: Adopting tubes to track multi-object in a one-step training model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6308–6318.
  84. F. Zeng, B. Dong, T. Wang, C. Chen, X. Zhang, and Y. Wei, “Motr: End-to-end multiple-object tracking with transformer,” arXiv preprint arXiv:2105.03247, 2021.
  85. J. Peng, C. Wang, F. Wan, Y. Wu, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang, and Y. Fu, “Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking,” in European Conference on Computer Vision.   Springer, 2020, pp. 145–161.
  86. J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell, and F. Yu, “Quasi-dense similarity learning for multiple object tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 164–173.
  87. J. Wu, J. Cao, L. Song, Y. Wang, M. Yang, and J. Yuan, “Track to detect and segment: An online multi-object tracker,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12 352–12 361.
  88. S. Han, P. Huang, H. Wang, E. Yu, D. Liu, X. Pan, and J. Zhao, “Mat: Motion-aware multi-object tracking,” arXiv preprint arXiv:2009.04794, 2020.
  89. L. Zheng, M. Tang, Y. Chen, G. Zhu, J. Wang, and H. Lu, “Improving multiple object tracking with single object tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2453–2462.
  90. Y. Xu, Y. Ban, G. Delorme, C. Gan, D. Rus, and X. Alameda-Pineda, “Transcenter: Transformers with dense queries for multiple-object tracking,” arXiv preprint arXiv:2103.15145, 2021.
  91. Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-object tracking with graph neural networks,” arXiv preprint arXiv:2006.13164, 2020.
  92. W. Li, Y. Xiong, S. Yang, M. Xu, Y. Wang, and W. Xia, “Semi-tcl: Semi-supervised track contrastive representation learning,” arXiv preprint arXiv:2107.02396, 2021.
  93. Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot: On the fairness of detection and re-identification in multiple object tracking,” arXiv preprint arXiv:2004.01888, 2020.
  94. E. Yu, Z. Li, S. Han, and H. Wang, “Relationtrack: Relation-aware multiple object tracking with decoupled representation,” arXiv preprint arXiv:2105.04322, 2021.
  95. P. Tokmakov, J. Li, W. Burgard, and A. Gaidon, “Learning to track with object permanence,” arXiv preprint arXiv:2103.14258, 2021.
  96. C. Liang, Z. Zhang, Y. Lu, X. Zhou, B. Li, X. Ye, and J. Zou, “Rethinking the competition between detection and reid in multi-object tracking,” arXiv preprint arXiv:2010.12138, 2020.
  97. P. Sun, Y. Jiang, R. Zhang, E. Xie, J. Cao, X. Hu, T. Kong, Z. Yuan, C. Wang, and P. Luo, “Transtrack: Multiple-object tracking with transformer,” arXiv preprint arXiv:2012.15460, 2020.
  98. C. Shan, C. Wei, B. Deng, J. Huang, X.-S. Hua, X. Cheng, and K. Liang, “Tracklets predicting based adaptive graph tracking,” arXiv preprint arXiv:2010.09015, 2020.
  99. C. Liang, Z. Zhang, X. Zhou, B. Li, Y. Lu, and W. Hu, “One more check: Making” fake background” be tracked again,” arXiv preprint arXiv:2104.09441, 2021.
  100. Q. Wang, Y. Zheng, P. Pan, and Y. Xu, “Multiple object tracking with correlation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3876–3886.
  101. P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, “Transmot: Spatial-temporal graph transformer for multiple object tracking,” arXiv preprint arXiv:2104.00194, 2021.
  102. F. Yang, X. Chang, S. Sakti, Y. Wu, and S. Nakamura, “Remot: A model-agnostic refinement for multiple object tracking,” Image and Vision Computing, vol. 106, p. 104091, 2021.
  103. Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X. Wang, “Bytetrack: Multi-object tracking by associating every detection box,” in European Conference on Computer Vision.   Springer, 2022, pp. 1–21.
  104. Y. Zhang, H. Sheng, Y. Wu, S. Wang, W. Ke, and Z. Xiong, “Multiplex labeling graph for near-online tracking in crowded scenes,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7892–7902, 2020.
  105. P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé, “MOT20: A benchmark for multi object tracking in crowded scenes,” arXiv preprint arXiv:2003.09003, 2020.
  106. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016.
  107. L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-identification: A benchmark,” in Int. Conf. Comput. Vis., 2015.
  108. W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep filter pairing neural network for person re-identification,” in IEEE Conf. Comput. Vis. Pattern Recog., 2014.
  109. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” in Adv. Neural Inform. Process. Syst., 2019.
  110. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Int. Conf. Learn. Represent., 2014.
  111. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430, 2021.
  112. J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T.-D. Nguyen, and M.-M. Cheng, “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017.
  113. K. M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, and P. Fua, “Learning to find good correspondences,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018.
  114. J. Zhang, D. Sun, Z. Luo, A. Yao, L. Zhou, T. Shen, Y. Chen, L. Quan, and H. Liao, “Learning two-view correspondences and geometry using order-aware network,” in Int. Conf. Comput. Vis., 2019.
  115. S. Tang, J. Zhang, S. Zhu, and P. Tan, “Quadtree attention for vision transformers,” in Int. Conf. Learn. Represent., 2021.
  116. A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser, “3dmatch: Learning local geometric descriptors from rgb-d reconstructions,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.