Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Message-Passing with Noisy Beeps (2303.15346v1)

Published 27 Mar 2023 in cs.DC

Abstract: Beeping models are models for networks of weak devices, such as sensor networks or biological networks. In these networks, nodes are allowed to communicate only via emitting beeps: unary pulses of energy. Listening nodes only the capability of {\it carrier sensing}: they can only distinguish between the presence or absence of a beep, but receive no other information. The noisy beeping model further assumes listening nodes may be disrupted by random noise. Despite this extremely restrictive communication model, it transpires that complex distributed tasks can still be performed by such networks. In this paper we provide an optimal procedure for simulating general message passing in the beeping and noisy beeping models. We show that a round of \textsf{Broadcast CONGEST} can be simulated in $O(\Delta\log n)$ round of the noisy (or noiseless) beeping model, and a round of \textsf{CONGEST} can be simulated in $O(\Delta2\log n)$ rounds (where $\Delta$ is the maximum degree of the network). We also prove lower bounds demonstrating that no simulation can use asymptotically fewer rounds. This allows a host of graph algorithms to be efficiently implemented in beeping models. As an example, we present an $O(\log n)$-round \textsf{Broadcast CONGEST} algorithm for maximal matching, which, when simulated using our method, immediately implies a near-optimal $O(\Delta \log2 n)$-round maximal matching algorithm in the noisy beeping model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.