Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Achieving Counterfactual Fairness with Imperfect Structural Causal Model (2303.14665v1)

Published 26 Mar 2023 in cs.LG, cs.AI, and cs.CY

Abstract: Counterfactual fairness alleviates the discrimination between the model prediction toward an individual in the actual world (observational data) and that in counterfactual world (i.e., what if the individual belongs to other sensitive groups). The existing studies need to pre-define the structural causal model that captures the correlations among variables for counterfactual inference; however, the underlying causal model is usually unknown and difficult to be validated in real-world scenarios. Moreover, the misspecification of the causal model potentially leads to poor performance in model prediction and thus makes unfair decisions. In this research, we propose a novel minimax game-theoretic model for counterfactual fairness that can produce accurate results meanwhile achieve a counterfactually fair decision with the relaxation of strong assumptions of structural causal models. In addition, we also theoretically prove the error bound of the proposed minimax model. Empirical experiments on multiple real-world datasets illustrate our superior performance in both accuracy and fairness. Source code is available at \url{https://github.com/tridungduong16/counterfactual_fairness_game_theoretic}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tri Dung Duong (6 papers)
  2. Qian Li (236 papers)
  3. Guandong Xu (93 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.