Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterfactually Fair Representation (2311.05420v1)

Published 9 Nov 2023 in cs.LG and cs.CY

Abstract: The use of machine learning models in high-stake applications (e.g., healthcare, lending, college admission) has raised growing concerns due to potential biases against protected social groups. Various fairness notions and methods have been proposed to mitigate such biases. In this work, we focus on Counterfactual Fairness (CF), a fairness notion that is dependent on an underlying causal graph and first proposed by Kusner \textit{et al.}~\cite{kusner2017counterfactual}; it requires that the outcome an individual perceives is the same in the real world as it would be in a "counterfactual" world, in which the individual belongs to another social group. Learning fair models satisfying CF can be challenging. It was shown in \cite{kusner2017counterfactual} that a sufficient condition for satisfying CF is to \textbf{not} use features that are descendants of sensitive attributes in the causal graph. This implies a simple method that learns CF models only using non-descendants of sensitive attributes while eliminating all descendants. Although several subsequent works proposed methods that use all features for training CF models, there is no theoretical guarantee that they can satisfy CF. In contrast, this work proposes a new algorithm that trains models using all the available features. We theoretically and empirically show that models trained with this method can satisfy CF\footnote{The code repository for this work can be found in \url{https://github.com/osu-srml/CF_Representation_Learning}}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhiqun Zuo (5 papers)
  2. Mohammad Mahdi Khalili (22 papers)
  3. Xueru Zhang (31 papers)
Citations (3)