Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthetic Combinations: A Causal Inference Framework for Combinatorial Interventions (2303.14226v2)

Published 24 Mar 2023 in stat.ME, cs.LG, econ.EM, and stat.ML

Abstract: Consider a setting where there are $N$ heterogeneous units and $p$ interventions. Our goal is to learn unit-specific potential outcomes for any combination of these $p$ interventions, i.e., $N \times 2p$ causal parameters. Choosing a combination of interventions is a problem that naturally arises in a variety of applications such as factorial design experiments, recommendation engines, combination therapies in medicine, conjoint analysis, etc. Running $N \times 2p$ experiments to estimate the various parameters is likely expensive and/or infeasible as $N$ and $p$ grow. Further, with observational data there is likely confounding, i.e., whether or not a unit is seen under a combination is correlated with its potential outcome under that combination. To address these challenges, we propose a novel latent factor model that imposes structure across units (i.e., the matrix of potential outcomes is approximately rank $r$), and combinations of interventions (i.e., the coefficients in the Fourier expansion of the potential outcomes is approximately $s$ sparse). We establish identification for all $N \times 2p$ parameters despite unobserved confounding. We propose an estimation procedure, Synthetic Combinations, and establish it is finite-sample consistent and asymptotically normal under precise conditions on the observation pattern. Our results imply consistent estimation given $\text{poly}(r) \times \left( N + s2p\right)$ observations, while previous methods have sample complexity scaling as $\min(N \times s2p, \ \ \text{poly(r)} \times (N + 2p))$. We use Synthetic Combinations to propose a data-efficient experimental design. Empirically, Synthetic Combinations outperforms competing approaches on a real-world dataset on movie recommendations. Lastly, we extend our analysis to do causal inference where the intervention is a permutation over $p$ items (e.g., rankings).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com