Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Entanglement Trajectory and its Boundary (2303.13587v5)

Published 23 Mar 2023 in quant-ph, math-ph, and math.MP

Abstract: In this article, we present a novel approach to investigating entanglement in the context of quantum computing. Our methodology involves analyzing reduced density matrices at different stages of a quantum algorithm's execution and representing the dominant eigenvalue and von Neumann entropy on a graph, creating an "entanglement trajectory." To establish the trajectory's boundaries, we employ random matrix theory. Through the examination of examples such as quantum adiabatic computation, the Grover algorithm, and the Shor algorithm, we demonstrate that the entanglement trajectory remains within the established boundaries, exhibiting unique characteristics for each example. Moreover, we show that these boundaries and features can be extended to trajectories defined by alternative entropy measures. The entanglement trajectory serves as an invariant property of a quantum system, maintaining consistency across varying situations and definitions of entanglement. Numerical simulations accompanying this research are available via open access.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. On the role of entanglement in quantum-computational speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, DOI: 10.1098/rspa.2002.1097.
  2. Román Orús and José I Latorre. Universality of entanglement and quantum-computation complexity. Physical Review A, DOI: 10.1103/PhysRevA.69.052308.
  3. Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Physical review letters, DOI: 10.1103/PhysRevLett.91.147902.
  4. Most quantum states are too entangled to be useful as computational resources. Physical review letters, DOI: 10.1103/PhysRevLett.102.190501.
  5. Geometry of quantum states: an introduction to quantum entanglement. Cambridge University Press, DOI: 10.1017/CBO9780511535048.
  6. Qibo: a framework for quantum simulation with hardware acceleration. Quantum Science and Technology, DOI: 10.1088/2058-9565/ac39f5.
  7. Quantum simulation with just-in-time compilation. Quantum, DOI: 10.22331/q-2022-09-22-814.
  8. Ruge Lin. https://github.com/gogoko699/random-density-matrix.
  9. Tameem Albash and Daniel A Lidar. Adiabatic quantum computation. Reviews of Modern Physics, DOI: 10.1103/RevModPhys.90.015002.
  10. Neil G Dickson and MHS Amin. Does adiabatic quantum optimization fail for np-complete problems? Physical review letters, DOI: 10.1103/PhysRevLett.106.050502.
  11. Exponential complexity of an adiabatic algorithm for an np-complete problem. Physical Review A, DOI: 10.1103/PhysRevA.73.022329.
  12. Sergi Ramos-Calderer. https://github.com/qiboteam/qibo/tree/master/examples /adiabatic3sat.
  13. Lov K Grover. A fast quantum mechanical algorithm for database search. Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, DOI: 10.1145/237814.237866.
  14. Sergi Ramos-Calderer. https://github.com/qiboteam/qibo/tree/master/examples /grover3sat.
  15. Mind the gap: Achieving a super-grover quantum speedup by jumping to the end. Proceedings of the 55th Annual ACM Symposium on Theory of Computing, DOI: 10.1145/3564246.3585203.
  16. Faster k-sat algorithms using biased-ppsz. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, DOI: 10.1145/3313276.3316359.
  17. Quantum search for scaled hash function preimages. Quantum Information Processing, DOI: 10.1007/s11128-021-03118-9.
  18. Daniel J Bernstein. Chacha, a variant of salsa20. Workshop record of SASC.
  19. Sergi Ramos-Calderer. https://github.com/qiboteam/qibo/tree/master/examples /hash-grover.
  20. Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, DOI: 10.1137/S0097539795293172.
  21. Vivien M Kendon and William J Munro. Entanglement and its role in Shor’s algorithm. arXiv:quant-ph/0412140.
  22. Sergi Ramos-Calderer. https://github.com/qiboteam/qibo/tree/master/examples/shor.
  23. Robert B Griffiths and Chi-Sheng Niu. Semiclassical Fourier transform for quantum computation. Physical Review Letters, DOI: 10.1103/PhysRevLett.76.3228.
  24. Entanglement simulations of Shor’s algorithm. Journal of Modern Optics, DOI: 10.1080/09500340110107207.
  25. Stephane Beauregard. Circuit for Shor’s algorithm using 2⁢n+32𝑛32n+32 italic_n + 3 qubits. arXiv:quant-ph/0205095.
  26. Samuel L Braunstein. Geometry of quantum inference. Physics Letters A, DOI: 10.1016/0375-9601(96)00365-9.
  27. Statistical properties of random density matrices. Journal of Physics A: Mathematical and General, DOI: 10.1088/0305-4470/37/35/004.
  28. Ion Nechita. Asymptotics of random density matrices. Annales Henri Poincaré, DOI: 10.1007/s00023-007-0345-5.
  29. Satya N Majumdar. Extreme eigenvalues of Wishart matrices: application to entangled bipartite system. Oxford Academic, DOI: 10.1093/oxfordhb/9780198744191.013.37.
  30. Adina Roxana Feier. Methods of proof in random matrix theory. https://www.math.harvard.edu/media/feier.pdf.
  31. Introduction to random matrices theory and practice. Springer Cham, DOI: 10.1007/978-3-319-70885-0.
  32. Z D Bai. Methodologies in spectral analysis of large dimensional random matrices, a review. Advances in Statistics, DOI: 10.1142/9789812793096_0015.
  33. Random matrices with complex Gaussian entries. Expositiones Mathematicae, DOI: 10.1016/S0723-0869(03)80036-1.
  34. A First Course in Random Matrix Theory: For Physicists, Engineers and Data Scientists. Cambridge University Press, DOI: 10.1017/9781108768900.
  35. Vladimir A Marčenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR-Sbornik, DOI: 10.1070/SM1967v001n04ABEH001994.
  36. John Wishart. The generalised product moment distribution in samples from a normal multivariate population. Biometrika, DOI: 10.1093/biomet/20A.1-2.32.
  37. An introduction to random matrices. Cambridge University Press, DOI: 10.1017/CBO9780511801334.
  38. Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, DOI: 10.1137/1.9781611977448.
  39. G. R. Belitskii , Yurii I. Lyubich. Matrix norms and their applications. Birkhäuser, DOI: 10.1007/978-3-0348-7400-7.
  40. Financial applications of random matrix theory: a short review. Oxford Academic, DOI: 10.1093/oxfordhb/9780198744191.013.40.
  41. Craig A Tracy and Harold Widom. On orthogonal and symplectic matrix ensembles. Communications in Mathematical Physics, DOI: 10.1007/BF02099545.
  42. Craig A Tracy and Harold Widom. Distribution functions for largest eigenvalues and their applications. arXiv:math-ph/0210034.
  43. Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. The Annals of statistics, DOI: 10.1214/aos/1009210544.
  44. Marco Chiani. Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution. Journal of Multivariate Analysis, DOI: 10.1016/j.jmva.2014.04.002.
  45. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Annals of Probability, DOI: 10.1214/009117905000000233.
  46. Vinayak and Marko Žnidarič. Subsystem dynamics under random Hamiltonian evolution. Journal of Physics A: Mathematical and Theoretical, DOI: 10.1088/1751-8113/45/12/125204.
  47. Vinayak and Akhilesh Pandey. Correlated Wishart ensembles and chaotic time series. Physical Review E, DOI: 10.1103/PhysRevE.81.036202.
  48. Vinayak. Spectral density of the noncentral correlated Wishart ensembles. Physical Review E, DOI: 10.1103/PhysRevE.90.042144.
  49. Don N Page. Average entropy of a subsystem. Physical review letters, DOI: 10.1103/PhysRevLett.71.1291.
  50. Siddhartha Sen. Average entropy of a quantum subsystem. Physical review letters, DOI: 10.1103/PhysRevLett.77.1.
  51. Probing the randomness of ergodic states: extreme-value statistics in the ergodic and many-body-localized phases. arXiv:2002.00682 [cond-mat.dis-nn].
  52. Induced measures in the space of mixed quantum states. Journal of Physics A: Mathematical and General, DOI: 10.1088/0305-4470/34/35/335.
  53. Aspects of generic entanglement. Communications in mathematical physics, DOI: 10.1007/s00220-006-1535-6.
  54. Absolutely Maximally Entangled States: Existence and Applications. arXiv:1306.2536 [quant-ph].
  55. Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices. Physical Review A, DOI: 10.1103/PhysRevA.92.032316.
  56. Table of AME states. https://tp.nt.uni-siegen.de/ame/ame.html.
  57. José I Latorre and Germán Sierra. Quantum Computation of Prime Number Functions. arXiv:1302.6245 [quant-ph].
  58. José I Latorre and Germán Sierra. There is entanglement in the primes. arXiv:1403.4765 [quant-ph].
  59. The Prime state and its quantum relatives. Quantum, DOI: 10.22331/q-2020-12-11-371.
  60. Murray Rosenblatt. A Central Limit Theorem and a Strong Mixing Condition. Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.42.1.43.
  61. Hui Li and F Duncan M Haldane. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states. Physical review letters, DOI: 10.1103/PhysRevLett.101.010504.
  62. Entanglement spectrum and boundary theories with projected entangled-pair states. Physical Review B, DOI: 10.1103/PhysRevB.83.245134.
  63. Bulk-edge correspondence in the Haldane phase of the bilinear-biquadratic spin-1111 Hamiltonian. Journal of Statistical Mechanics: Theory and Experiment, DOI: 10.1088/1742-5468/abf7b4.
  64. Vincenzo Alba. Entanglement gap, corners, and symmetry breaking. arXiv:2010.00787 [cond-mat.stat-mech].
  65. Entanglement spectrum in one-dimensional systems. Physical Review A, DOI: 10.1103/PhysRevA.78.032329.
  66. Disentangling entanglement spectra of fractional quantum hall states on torus geometries. Physical review letters, DOI: 10.1103/PhysRevLett.104.156404.
  67. Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. Cambridge University Press, DOI: 10.1017/CBO9780511976667.
  68. On Tényi and Tsallis entropies and divergences for exponential families. arXiv:1105.3259 [cs.IT].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets