Holographic torus correlators of stress tensor in $AdS_3/CFT_2$ (2303.13280v1)
Abstract: In the context of $\rm AdS_3/CFT_2$, we investigate holographic correlators of the stress tensor of a conformal field theory (CFT) on a torus in this work. To calculate the correlators of the stress tensor, we employ the Einstein-Hilbert theory of gravity and perturbatively solve Einstein's equation in the bulk. We offer an explicit prescription to develop a recurrence relation that makes it simple to compute higher point correlators. The correlators and the recurrence relation are found to be consistent with what is known in CFTs. Following the spirit of the proposed cutoff $\rm AdS$/$T\bar{T}$ CFT holography, we then expand our computation program to investigate holographic torus correlators at a finite cutoff in the $\rm AdS_3$. A parallel recurrence relation associated with higher point correlators can be obtained.
- G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308, 284 (1993), arXiv:gr-qc/9310026 .
- L. Susskind, The World as a hologram, J. Math. Phys. 36, 6377 (1995), arXiv:hep-th/9409089 .
- J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109 .
- E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 .
- H. Liu and A. A. Tseytlin, On four point functions in the CFT / AdS correspondence, Phys. Rev. D 59, 086002 (1999), arXiv:hep-th/9807097 .
- G. Arutyunov and S. Frolov, Three point Green function of the stress energy tensor in the AdS / CFT correspondence, Phys. Rev. D 60, 026004 (1999), arXiv:hep-th/9901121 .
- S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents in AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT/CFT33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Phys. Rev. D 85, 126008 (2012), arXiv:1201.6452 [hep-th] .
- A. Bagchi, D. Grumiller, and W. Merbis, Stress tensor correlators in three-dimensional gravity, Phys. Rev. D 93, 061502 (2016), arXiv:1507.05620 [hep-th] .
- C. Fefferman and C. R. Graham, Conformal invariants, Astérisque S131 (1985).
- M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07, 023, arXiv:hep-th/9806087 .
- K. Skenderis and S. N. Solodukhin, Quantum effective action from the AdS / CFT correspondence, Phys. Lett. B 472, 316 (2000), arXiv:hep-th/9910023 .
- S. de Haro, S. N. Solodukhin, and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence, Commun. Math. Phys. 217, 595 (2001), arXiv:hep-th/0002230 .
- C. Fefferman and C. R. Graham, The ambient metric, Ann. Math. Stud. 178, 1 (2011), arXiv:0710.0919 [math.DG] .
- C. R. Graham and J. M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87, 186 (1991).
- M. T. Anderson, On the structure of conformally compact einstein metrics, arXiv preprint math/0402198 (2004).
- M. T. Anderson, Geometric aspects of the AdS / CFT correspondence, IRMA Lect. Math. Theor. Phys. 8, 1 (2005), arXiv:hep-th/0403087 .
- M. T. Anderson, Einstein metrics with prescribed conformal infinity on 4-manifolds, Geometric and Functional Analysis 18, 305 (2008).
- S. He and Y. Sun, Correlation functions of CFTs on a torus with a TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation, Phys. Rev. D 102, 026023 (2020), arXiv:2004.07486 [hep-th] .
- A. B. Zamolodchikov, Expectation value of composite field T anti-T in two-dimensional quantum field theory, (2004), arXiv:hep-th/0401146 .
- F. A. Smirnov and A. B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915, 363 (2017), arXiv:1608.05499 [hep-th] .
- L. McGough, M. Mezei, and H. Verlinde, Moving the CFT into the bulk with TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG, JHEP 04, 010, arXiv:1611.03470 [hep-th] .
- P. Kraus, J. Liu, and D. Marolf, Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation, JHEP 07, 027, arXiv:1801.02714 [hep-th] .
- O. Aharony and T. Vaknin, The TT* deformation at large central charge, JHEP 05, 166, arXiv:1803.00100 [hep-th] .
- S. He, Y. Sun, and Y.-X. Zhang, TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG-flow effects on torus partition functions, JHEP 09, 061, arXiv:2011.02902 [hep-th] .
- Y. Li and Y. Zhou, Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in the large central charge sector: correlators of energy-momentum tensor, JHEP 12, 168, arXiv:2005.01693 [hep-th] .
- V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208, 413 (1999), arXiv:hep-th/9902121 .
- R. Emparan, C. V. Johnson, and R. C. Myers, Surface terms as counterterms in the AdS / CFT correspondence, Phys. Rev. D 60, 104001 (1999), arXiv:hep-th/9903238 .
- D. Friedan and S. H. Shenker, The Analytic Geometry of Two-Dimensional Conformal Field Theory, Nucl. Phys. B 281, 509 (1987).
- T. Eguchi and H. Ooguri, Conformal and Current Algebras on General Riemann Surface, Nucl. Phys. B 282, 308 (1987).
- A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02, 029, arXiv:0712.0155 [hep-th] .
- J. M. Maldacena and A. Strominger, AdS(3) black holes and a stringy exclusion principle, JHEP 12, 005, arXiv:hep-th/9804085 .
- A. M. Polyakov, Quantum Gravity in Two-Dimensions, Mod. Phys. Lett. A 2, 893 (1987).
- M. Banados and R. Caro, Holographic ward identities: Examples from 2+1 gravity, JHEP 12, 036, arXiv:hep-th/0411060 .
- X. Yin, Partition Functions of Three-Dimensional Pure Gravity, Commun. Num. Theor. Phys. 2, 285 (2008), arXiv:0710.2129 [hep-th] .
- J. Cardy, The TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry, JHEP 10, 186, arXiv:1801.06895 [hep-th] .
- S. Datta and Y. Jiang, TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions, JHEP 08, 106, arXiv:1806.07426 [hep-th] .
- L. Hadasz, Z. Jaskolski, and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01, 063, arXiv:0911.2353 [hep-th] .
- L. F. Alday, M. Kologlu, and A. Zhiboedov, Holographic correlators at finite temperature, JHEP 06, 082, arXiv:2009.10062 [hep-th] .
- M. Pavlov, Global torus blocks in the necklace channel, (2023), arXiv:2302.10153 [hep-th] .
- G. Policastro, D. T. Son, and A. O. Starinets, The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87, 081601 (2001), arXiv:hep-th/0104066 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.