Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Framework of Policy Learning for Contextual Bandit with Confounding Bias and Missing Observations (2303.11187v1)

Published 20 Mar 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We study the offline contextual bandit problem, where we aim to acquire an optimal policy using observational data. However, this data usually contains two deficiencies: (i) some variables that confound actions are not observed, and (ii) missing observations exist in the collected data. Unobserved confounders lead to a confounding bias and missing observations cause bias and inefficiency problems. To overcome these challenges and learn the optimal policy from the observed dataset, we present a new algorithm called Causal-Adjusted Pessimistic (CAP) policy learning, which forms the reward function as the solution of an integral equation system, builds a confidence set, and greedily takes action with pessimism. With mild assumptions on the data, we develop an upper bound to the suboptimality of CAP for the offline contextual bandit problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.