Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computing the Mass Shift of Wilson and Staggered Fermions in the Lattice Schwinger Model with Matrix Product States (2303.11016v2)

Published 20 Mar 2023 in hep-lat, cond-mat.str-el, hep-th, and quant-ph

Abstract: Simulations of lattice gauge theories with tensor networks and quantum computing have so far mainly focused on staggered fermions. In this paper, we use matrix product states to study Wilson fermions in the Hamiltonian formulation and present a novel method to determine the additive mass renormalization. Focusing on the single-flavor Schwinger model as a benchmark model, we investigate the regime of a nonvanishing topological $\theta$-term, which is inaccessible to conventional Monte Carlo methods. We systematically explore the dependence of the mass shift on the volume, the lattice spacing, the $\theta$-parameter, and the Wilson parameter. This allows us to follow lines of constant renormalized mass, and therefore to substantially improve the continuum extrapolation of the mass gap and the electric field density. For small values of the mass, our continuum results agree with the theoretical prediction from mass perturbation theory. Going beyond Wilson fermions, our technique can also be applied to staggered fermions, and we demonstrate that the results of our approach agree with a recent theoretical prediction for the mass shift at sufficiently large volumes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice, Vol. 788 (Springer, Berlin, 2010).
  2. K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rep. Prog. Phys. 74, 014001 (2011).
  3. K. Nagata, Finite-density lattice QCD and sign problem: Current status and open problems, Prog. Part. Nucl. Phys. 127, 103991 (2022).
  4. L. Funcke, K. Jansen, and S. Kühn, Topological vacuum structure of the Schwinger model with matrix product states, Phys. Rev. D 101, 054507 (2020).
  5. L. Funcke, S. Kühn, and K. Jansen, CP-violating dashen phase transition in the two-flavor schwinger model: a study with matrix product states, PoS (LATTICE2021), 552 (2022).
  6. L. Funcke, K. Jansen, and S. Kühn, Exploring the CP-Violating Dashen Phase in the Schwinger Model with Tensor Networks, arXiv:2303.03799 ,  (2023a).
  7. N. Klco, M. J. Savage, and J. R. Stryker, SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers, Phys. Rev. D 101, 074512 (2020).
  8. A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis, Phys. Rev. D 103, 094501 (2021).
  9. J. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).
  10. K. G. Wilson, Quarks and Strings on a Lattice, in 13th International School of Subnuclear Physics: New Phenomena in Subnuclear Physics (1975).
  11. M. Creutz, Chiral symmetry on the lattice, Nucl. Phys. B - Proceedings Supplements 42, 56 (1995).
  12. H. J. Rothe, Lattice Gauge Theories : An Introduction (Fourth Edition), Vol. 43 (World Scientific Publishing Company, 2012).
  13. T. Okuda, Schwinger model on an interval: Analytic results and DMRG, Phys. Rev. D 107, 054506 (2023).
  14. M. Honda, E. Itou, and Y. Tanizaki, Dmrg study of the higher-charge schwinger model and its ’t hooft anomaly, Journal of High Energy Physics 2022, 141 (2022).
  15. D. Tong, Lectures on Gauge Theory (2018).
  16. C. Adam, Massive Schwinger Model within Mass Perturbation Theory, Ann. Phys. 259, 1 (1997).
  17. S. Coleman, More about the massive Schwinger model, Ann. Phys. 101, 239 (1976).
  18. S. Coleman, R. Jackiw, and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Ann. Phys. 93, 267 (1975).
  19. K. Fujikawa, Path-integral measure for gauge-invariant fermion theories, Phys. Rev. Lett. 42, 1195 (1979).
  20. C. J. Hamer, Z. Weihong, and J. Oitmaa, Series expansions for the massive Schwinger model in Hamiltonian lattice theory, Phys. Rev. D 56, 55 (1997).
  21. P. Jordan and E. P. Wigner, About the Pauli exclusion principle, Z. Phys. 47, 631 (1928).
  22. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).
  23. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
  24. This can always be achieved by subtracting a large enough constant from the Hamiltonian.
  25. C. Hoelbling, Lattice QCD: Concepts, Techniques and Some Results, Acta Physica Polonica B 45, 2143 (2014).
  26. G. Clemente, A. Crippa, and K. Jansen, Strategies for the determination of the running coupling of (2+1)-dimensional QED with quantum computing, Phys. Rev. D 106, 114511 (2022).
  27. A. Avkhadiev, P. E. Shanahan, and R. D. Young, Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing, Phys. Rev. Lett. 124, 080501 (2020).
  28. A. Avkhadiev, P. E. Shanahan, and R. D. Young, Strategies for quantum-optimized construction of interpolating operators in classical simulations of lattice quantum field theories, arXiv:2209.01209 ,  (2022).
Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.