Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation (2303.10980v3)

Published 20 Mar 2023 in cs.LO

Abstract: We introduce the 2-sorted counting logic $GCk$ that expresses properties of hypergraphs. This logic has available k variables to address hyperedges, an unbounded number of variables to address vertices, and atomic formulas E(e,v) to express that a vertex v is contained in a hyperedge e. We show that two hypergraphs H, H' satisfy the same sentences of the logic $GCk$ if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of generalised hypertree width at most k. Here, H, H' are called homomorphism indistinguishable over a class C if for every hypergraph G in C the number of homomorphisms from G to H equals the number of homomorphisms from G to H'. This result can be viewed as a generalisation (from graphs to hypergraphs) of a result by Dvorak (2010) stating that any two (undirected, simple, finite) graphs H, H' are indistinguishable by the (k+1)-variable counting logic $C{k+1}$ if, and only if, they are homomorphism indistinguishable on the class of graphs of tree width at most k.

Citations (4)

Summary

We haven't generated a summary for this paper yet.