Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algorithmic Meta Theorem for Homomorphism Indistinguishability (2402.08989v1)

Published 14 Feb 2024 in cs.LO, cs.CC, cs.DM, and math.CO

Abstract: Two graphs $G$ and $H$ are homomorphism indistinguishable over a family of graphs $\mathcal{F}$ if for all graphs $F \in \mathcal{F}$ the number of homomorphisms from $F$ to $G$ is equal to the number of homomorphism from $F$ to $H$. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, cospectrality, and logical equivalences can be characterised as homomorphism indistinguishability relations over various graph classes. For a fixed graph class $\mathcal{F}$, the decision problem HomInd($\mathcal{F}$) asks to determine whether two input graphs $G$ and $H$ are homomorphism indistinguishable over $\mathcal{F}$. The problem HomInd($\mathcal{F}$) is known to be decidable only for few graph classes $\mathcal{F}$. We show that HomInd($\mathcal{F}$) admits a randomised polynomial-time algorithm for every graph class $\mathcal{F}$ of bounded treewidth which is definable in counting monadic second-order logic CMSO2. Thereby, we give the first general algorithm for deciding homomorphism indistinguishability. This result extends to a version of HomInd where the graph class $\mathcal{F}$ is specified by a CMSO2-sentence and a bound $k$ on the treewidth, which are given as input. For fixed $k$, this problem is randomised fixed-parameter tractable. If $k$ is part of the input then it is coNP- and coW[1]-hard. Addressing a problem posed by Berkholz (2012), we show coNP-hardness by establishing that deciding indistinguishability under the $k$-dimensional Weisfeiler--Leman algorithm is coNP-hard when $k$ is part of the input.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, New York, 1965.
  2. Discrete Density Comonads and Graph Parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in Computer Science, pages 23–44, Cham, 2022. Springer International Publishing. doi:10.1007/978-3-031-10736-8_2.
  3. PRIMES is in P. Annals of Mathematics, 160(2):781–793, September 2004. doi:10.4007/annals.2004.160.781.
  4. On the Expressive Power of Homomorphism Counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13, 2021. doi:10.1109/LICS52264.2021.9470543.
  5. Sherali-Adams Relaxations and Indistinguishability in Counting Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 367–379, New York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2090236.2090265.
  6. Quantum and non-signalling graph isomorphisms. J. Comb. Theory, Ser. B, 136:289–328, 2019. doi:10.1016/j.jctb.2018.11.002.
  7. László Babai. Graph Isomorphism in Quasipolynomial Time [Extended Abstract]. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 684–697, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2897518.2897542.
  8. Christoph Berkholz. Lower Bounds for Existential Pebble Games and k𝑘kitalic_k-Consistency Tests. In 2012 27th Annual IEEE Symposium on Logic in Computer Science, pages 25–34, Dubrovnik, Croatia, June 2012. IEEE. URL: http://ieeexplore.ieee.org/document/6280421/, doi:10.1109/LICS.2012.14.
  9. Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement. Theory Comput. Syst., 60(4):581–614, 2017. doi:10.1007/s00224-016-9686-0.
  10. Hans L. Bodlaender. A partial k𝑘kitalic_k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1):1–45, December 1998. URL: https://www.sciencedirect.com/science/article/pii/S0304397597002284, doi:10.1016/S0304-3975(97)00228-4.
  11. Treewidth for graphs with small chordality. Discrete Applied Mathematics, 79(1-3):45–61, November 1997. URL: https://linkinghub.elsevier.com/retrieve/pii/S0166218X97000310, doi:10.1016/S0166-218X(97)00031-0.
  12. Definability equals recognizability for graphs of bounded treewidth. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 407–416, New York NY USA, July 2016. ACM. URL: https://dl.acm.org/doi/10.1145/2933575.2934508, doi:10.1145/2933575.2934508.
  13. The Complexity of Homomorphism Indistinguishability. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), volume 138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1–54:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.54, doi:10.4230/LIPIcs.MFCS.2019.54.
  14. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:10.1007/BF01305232.
  15. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12–75, March 1990. URL: https://www.sciencedirect.com/science/article/pii/089054019090043H, doi:10.1016/0890-5401(90)90043-H.
  16. Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press, USA, 1st edition, 2012.
  17. Parameterized Algorithms. Springer International Publishing, Cham, 2015. URL: https://link.springer.com/10.1007/978-3-319-21275-3, doi:10.1007/978-3-319-21275-3.
  18. Lovász-Type Theorems and Game Comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470609.
  19. Lovász Meets Weisfeiler and Leman. 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages 40:1–40:14, 2018. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9044/, doi:10.4230/LIPICS.ICALP.2018.40.
  20. Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330–342, August 2010. doi:10.1002/jgt.20461.
  21. Going Deep and Going Wide: Counting Logic and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.27, doi:10.4230/LIPIcs.CSL.2024.27.
  22. Martin Grohe. Equivalence in Finite-Variable Logics is Complete for Polynomial Time. Combinatorica, 19(4):507–532, October 1999. URL: http://link.springer.com/10.1007/s004939970004, doi:10.1007/s004939970004.
  23. Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, pages 507–520, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3373718.3394739.
  24. Martin Grohe. The Logic of Graph Neural Networks. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–17. IEEE, 2021. doi:10.1109/LICS52264.2021.9470677.
  25. Compressing CFI Graphs and Lower Bounds for the Weisfeiler–Leman Refinements. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 798–809. IEEE, 2023. doi:10.1109/FOCS57990.2023.00052.
  26. Pebble Games and Linear Equations. The Journal of Symbolic Logic, 80(3):797–844, 2015. URL: http://www.jstor.org/stable/43864249, doi:10.1017/jsl.2015.28.
  27. Homomorphism Tensors and Linear Equations. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 70:1–70:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.70, doi:10.4230/LIPIcs.ICALP.2022.70.
  28. Describing Graphs: A First-Order Approach to Graph Canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.
  29. Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1–36:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.36, doi:10.4230/LIPIcs.CSL.2024.36.
  30. László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321–328, September 1967. doi:10.1007/BF02280291.
  31. László Lovász. Large networks and graph limits. Number volume 60 in American Mathematical Society colloquium publications. American Mathematical Society, Providence, Rhode Island, 2012.
  32. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661–672, 2020. doi:10.1109/FOCS46700.2020.00067.
  33. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33:4602–4609, July 2019. URL: https://aaai.org/ojs/index.php/AAAI/article/view/4384, doi:10.1609/aaai.v33i01.33014602.
  34. Melvyn B. Nathanson. Elementary Methods in Number Theory, volume 195 of Graduate Texts in Mathematics. Springer New York, New York, NY, 2000. doi:10.1007/b98870.
  35. Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width, April 2023. URL: http://arxiv.org/abs/2304.07011.
  36. David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree, June 2022. URL: http://arxiv.org/abs/2206.10321.
  37. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 101:1–101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.101, doi:10.4230/LIPIcs.ICALP.2023.101.
  38. Barkley Rosser. Explicit Bounds for Some Functions of Prime Numbers. American Journal of Mathematics, 63(1):211, January 1941. URL: https://www.jstor.org/stable/2371291, doi:10.2307/2371291.
  39. Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.82, doi:10.4230/LIPIcs.MFCS.2023.82.
  40. How Powerful are Graph Neural Networks? In International Conference on Learning Representations, 2019. URL: https://openreview.net/forum?id=ryGs6iA5Km.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com