Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Maximal dimension of affine subspaces of specific matrices (2303.10629v4)

Published 19 Mar 2023 in math.RA

Abstract: For every $n \in \mathbb{N}$ and every field $K$, let $N(n,K)$ be the set of the nilpotent $n \times n$ matrices over $K$ and let $D(n,K) $ be the set of the $n \times n$ matrices over $K$ which are diagonalizable over $K$. Moreover, let $R(n) $ be the set of the normal $n \times n$ matrices. In this short note we prove that the maximal dimension of an affine subspace in $N(n,K)$ is $ \frac{n(n-1)}{2}$ and, if the characteristic of the field is zero, an affine not linear subspace in $N(n,K)$ has dimension less than or equal to $ \frac{n(n-1)}{2}-1$. Moreover we prove that the maximal dimension of an affine subspace in $R(n)$ is $n$, the maximal dimension of a linear subspace in $D(n, \mathbb{R})$ is $ \frac{n(n+1)}{2}$, while the maximal dimension of an affine not linear subspace in $D(n, \mathbb{R})$ is $ \frac{n(n+1)}{2} -1$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.