Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach (2303.10373v1)

Published 18 Mar 2023 in cs.LG and eess.SP

Abstract: Federated learning (FL) is an emerging ML paradigm used to train models across multiple nodes (i.e., clients) holding local data sets, without explicitly exchanging the data. It has attracted a growing interest in recent years due to its advantages in terms of privacy considerations, and communication resources. In FL, selected clients train their local models and send a function of the models to the server, which consumes a random processing and transmission time. The server updates the global model and broadcasts it back to the clients. The client selection problem in FL is to schedule a subset of the clients for training and transmission at each given time so as to optimize the learning performance. In this paper, we present a novel multi-armed bandit (MAB)-based approach for client selection to minimize the training latency without harming the ability of the model to generalize, that is, to provide reliable predictions for new observations. We develop a novel algorithm to achieve this goal, dubbed Bandit Scheduling for FL (BSFL). We analyze BSFL theoretically, and show that it achieves a logarithmic regret, defined as the loss of BSFL as compared to a genie that has complete knowledge about the latency means of all clients. Furthermore, simulation results using synthetic and real datasets demonstrate that BSFL is superior to existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dan Ben Ami (2 papers)
  2. Kobi Cohen (52 papers)
  3. Qing Zhao (181 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.