Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

She Elicits Requirements and He Tests: Software Engineering Gender Bias in Large Language Models (2303.10131v1)

Published 17 Mar 2023 in cs.SE, cs.AI, cs.CY, and cs.LG

Abstract: Implicit gender bias in software development is a well-documented issue, such as the association of technical roles with men. To address this bias, it is important to understand it in more detail. This study uses data mining techniques to investigate the extent to which 56 tasks related to software development, such as assigning GitHub issues and testing, are affected by implicit gender bias embedded in LLMs. We systematically translated each task from English into a genderless language and back, and investigated the pronouns associated with each task. Based on translating each task 100 times in different permutations, we identify a significant disparity in the gendered pronoun associations with different tasks. Specifically, requirements elicitation was associated with the pronoun "he" in only 6% of cases, while testing was associated with "he" in 100% of cases. Additionally, tasks related to helping others had a 91% association with "he" while the same association for tasks related to asking coworkers was only 52%. These findings reveal a clear pattern of gender bias related to software development tasks and have important implications for addressing this issue both in the training of LLMs and in broader society.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Christoph Treude (137 papers)
  2. Hideaki Hata (48 papers)
Citations (15)