Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Higher order derivatives of the adjugate matrix and the Jordan form (2303.09953v2)

Published 17 Mar 2023 in math.FA, cs.NA, and math.NA

Abstract: In this short note, we show that the higher-order derivatives of the adjugate matrix $\mbox{Adj}(z-A)$, are related to the nilpotent matrices and projections in the Jordan decomposition of the matrix $A$. These relations appear as a factorization of the derivative of the adjugate matrix as a product of factors related to the eigenvalues, nilpotent matrices and projectors. The novel relations are obtained using the Riesz projector and functional calculus. The results presented here can be considered to be a generalization of Thompson and McEnteggert's theorem relating the adjugate matrix to the orthogonal projection on the eigenspace of simple eigenvalues for symmetric matrices. They can also be seen as a complement to some earlier results by B. Parisse, M. Vaughan that relate derivatives of the adjugate matrix to the invariant subspaces associated with an eigenvalue. Our results can also be interpreted as a general eigenvector-eigenvalue identity. Many previous works have dealt with relations between the projectors on the eigenspaces and the derivatives of the adjugate matrix with the characteristic spaces but it seems that there is no explicit mention in the literature of the factorization of the higher-order derivatives of the adjugate matrix as a matrix multiplication involving nilpotent and projector matrices, which appear in the Jordan decomposition theorem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.