Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduction of rain-induced errors for wind speed estimation on SAR observations using convolutional neural networks (2303.09200v2)

Published 16 Mar 2023 in cs.CV and physics.ao-ph

Abstract: Synthetic Aperture Radar is known to be able to provide high-resolution estimates of surface wind speed. These estimates usually rely on a Geophysical Model Function (GMF) that has difficulties accounting for non-wind processes such as rain events. Convolutional neural network, on the other hand, have the capacity to use contextual information and have demonstrated their ability to delimit rainfall areas. By carefully building a large dataset of SAR observations from the Copernicus Sentinel-1 mission, collocated with both GMF and atmospheric model wind speeds as well as rainfall estimates, we were able to train a wind speed estimator with reduced errors under rain. Collocations with in-situ wind speed measurements from buoys show a root mean square error that is reduced by 27% (resp. 45%) under rainfall estimated at more than 1 mm/h (resp. 3 mm/h). These results demonstrate the capacity of deep learning models to correct rain-related errors in SAR products.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. C. Wang, P. Tandeo, A. Mouche, J. E. Stopa, V. Gressani, N. Longepe, D. Vandemark, R. C. Foster, and B. Chapron, “Classification of the global sentinel-1 SAR vignettes for ocean surface process studies,” Remote Sensing of Environment, vol. 234, p. 111457, Dec. 2019. [Online]. Available: https://doi.org/10.1016/j.rse.2019.111457
  2. M. M. Barbat, C. Wesche, A. V. Werhli, and M. M. Mata, “An adaptive machine learning approach to improve automatic iceberg detection from SAR images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 156, pp. 247–259, Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.isprsjprs.2019.08.015
  3. F. Ronci, C. Avolio, M. di Donna, M. Zavagli, V. Piccialli, and M. Costantini, “Oil spill detection from SAR images by deep learning,” in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, Sep. 2020. [Online]. Available: https://doi.org/10.1109/igarss39084.2020.9323590
  4. J. Svejkovsky and J. Shandley, “Detection of offshore plankton blooms with AVHRR and SAR imagery,” International Journal of Remote Sensing, vol. 22, no. 2-3, pp. 471–485, Jan. 2001. [Online]. Available: https://doi.org/10.1080/014311601450040
  5. H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Marine Pollution Bulletin, vol. 78, no. 1-2, pp. 190–195, Jan. 2014. [Online]. Available: https://doi.org/10.1016/j.marpolbul.2013.10.044
  6. F. Ardhuin, B. Chapron, and F. Collard, “Observation of swell dissipation across oceans,” Geophysical Research Letters, vol. 36, no. 6, Mar. 2009. [Online]. Available: https://doi.org/10.1029/2008gl037030
  7. B. Zhang and W. Perrie, “Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes,” Bulletin of the American Meteorological Society, vol. 93, no. 4, pp. 531–541, Apr. 2012. [Online]. Available: https://doi.org/10.1175/bams-d-11-00001.1
  8. A. A. Mouche, B. Chapron, B. Zhang, and R. Husson, “Combined co- and cross-polarized SAR measurements under extreme wind conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 12, pp. 6746–6755, Dec. 2017. [Online]. Available: https://doi.org/10.1109/tgrs.2017.2732508
  9. A. Long, “C-band v-polarized radar sea-echo model from ERS-1 haltenbanken campaign,” Journal of Electromagnetic Waves and Applications, vol. 9, no. 3, pp. 373–391, Jan. 1995. [Online]. Available: https://doi.org/10.1163/156939395x00532
  10. A. Stoffelen and D. Anderson, “Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4,” Journal of Geophysical Research: Oceans, vol. 102, no. C3, pp. 5767–5780, Mar. 1997. [Online]. Available: https://doi.org/10.1029/96jc02860
  11. H. Hersbach, “Cmod5 an improved geophysical model function for ers c-band scatterometry,” 2003, [Accessed: 2023-13-09]. [Online]. Available: https://www.ecmwf.int/node/9861
  12. ——, “Cmod5.n: A c-band geophysical model function for equivalent neutral wind.” 2008, [Accessed: 2023-13-09]. [Online]. Available: https://www.ecmwf.int/node/9873
  13. A. Elyouncha, X. Neyt, A. Stoffelen, and J. Verspeek, “Assessment of the corrected CMOD6 GMF using scatterometer data,” in SPIE Proceedings, C. R. Bostater, S. P. Mertikas, and X. Neyt, Eds.   SPIE, Oct. 2015. [Online]. Available: https://doi.org/10.1117/12.2195727
  14. A. Stoffelen, J. A. Verspeek, J. Vogelzang, and A. Verhoef, “The CMOD7 geophysical model function for ASCAT and ERS wind retrievals,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 5, pp. 2123–2134, May 2017. [Online]. Available: https://doi.org/10.1109/jstars.2017.2681806
  15. Y. Lu, B. Zhang, W. Perrie, A. Mouche, X. Li, and H. Wang, “A c-band geophysical model function for determining coastal wind speed using synthetic aperture radar,” in 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama).   IEEE, Aug. 2018. [Online]. Available: https://doi.org/10.23919/piers.2018.8598163
  16. H. Shen, Y. He, and W. Perrie, “Speed ambiguity in hurricane wind retrieval from SAR imagery,” International Journal of Remote Sensing, vol. 30, no. 11, pp. 2827–2836, Jun. 2009. [Online]. Available: https://doi.org/10.1080/01431160802555879
  17. P. A. Hwang, A. Stoffelen, G.-J. van Zadelhoff, W. Perrie, B. Zhang, H. Li, and H. Shen, “Cross-polarization geophysical model function for c-band radar backscattering from the ocean surface and wind speed retrieval,” Journal of Geophysical Research: Oceans, vol. 120, no. 2, pp. 893–909, Feb. 2015. [Online]. Available: https://doi.org/10.1002/2014jc010439
  18. A. Mouche, B. Chapron, J. Knaff, Y. Zhao, B. Zhang, and C. Combot, “Copolarized and cross-polarized SAR measurements for high-resolution description of major hurricane wind structures: Application to irma category 5 hurricane,” Journal of Geophysical Research: Oceans, vol. 124, no. 6, pp. 3905–3922, Jun. 2019. [Online]. Available: https://doi.org/10.1029/2019jc015056
  19. B. Zhang, W. Perrie, J. A. Zhang, E. W. Uhlhorn, and Y. He, “High-resolution hurricane vector winds from c-band dual-polarization SAR observations,” Journal of Atmospheric and Oceanic Technology, vol. 31, no. 2, pp. 272–286, Feb. 2014. [Online]. Available: https://doi.org/10.1175/jtech-d-13-00006.1
  20. Y. Lu, B. Zhang, W. Perrie, A. Mouche, and G. Zhang, “CMODH validation for c-band synthetic aperture radar HH polarization wind retrieval over the ocean,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 1, pp. 102–106, Jan. 2021. [Online]. Available: https://doi.org/10.1109/lgrs.2020.2967811
  21. S. Wang, K.-V. Yuen, X. Yang, and B. Zhang, “A nonparametric tropical cyclone wind speed estimation model based on dual-polarization SAR observations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022. [Online]. Available: https://doi.org/10.1109/tgrs.2022.3188328
  22. W. Alpers, B. Zhang, A. Mouche, K. Zeng, and P. W. Chan, “Rain footprints on c-band synthetic aperture radar images of the ocean - revisited,” Remote Sensing of Environment, vol. 187, pp. 169–185, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.rse.2016.10.015
  23. A. Colin, P. Tandeo, C. Peureux, R. Husson, N. Longépé, and R. Fablet, “Rainfall estimation with sar using nexrad collocations with convolutional neural networks,” 2022, [Accessed: 2023-13-09]. [Online]. Available: https://arxiv.org/abs/2207.07333
  24. G. Fracastoro, E. Magli, G. Poggi, G. Scarpa, D. Valsesia, and L. Verdoliva, “Deep learning methods for synthetic aperture radar image despeckling: An overview of trends and perspectives,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 2, pp. 29–51, Jun. 2021. [Online]. Available: https://doi.org/10.1109/mgrs.2021.3070956
  25. S. Wei, H. Zhang, X. Zeng, Z. Zhou, J. Shi, and X. Zhang, “CARNet: An effective method for SAR image interference suppression,” International Journal of Applied Earth Observation and Geoinformation, vol. 114, p. 103019, Nov. 2022. [Online]. Available: https://doi.org/10.1016/j.jag.2022.103019
  26. C. Wang, A. Mouche, P. Tandeo, J. E. Stopa, N. Longépé, G. Erhard, R. C. Foster, D. Vandemark, and B. Chapron, “A labelled ocean SAR imagery dataset of ten geophysical phenomena from sentinel-1 wave mode,” Geoscience Data Journal, vol. 6, no. 2, pp. 105–115, Jul. 2019. [Online]. Available: https://doi.org/10.1002/gdj3.73
  27. Precipitation Processing System (PPS) At NASA GSFC, “Gpm dpr precipitation profile l2a 1.5 hours 5 km v07,” 2021. [Online]. Available: https://disc.gsfc.nasa.gov/datacollection/
  28. R. O. C. NOAA National Weather Service, “Noaa next generation radar (nexrad) level ii base data,” 1991. [Online]. Available: https://www.ncei.noaa.gov/metadata/geoportal
  29. M. Bourbigot, P. Vincent, H. Johnsen, and R. Piantanida, “Sentinel-1 IPF Auxiliary Product Specification - Sentinel Online — sentinel.esa.int,” 2022, [Accessed: 2023-13-09]. [Online]. Available: https://sentinels.copernicus.eu/fr/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/id/4771416
  30. Y. Quilfen, B. Chapron, T. Elfouhaily, K. Katsaros, and J. Tournadre, “Observation of tropical cyclones by high-resolution scatterometry,” Journal of Geophysical Research: Oceans, vol. 103, no. C4, pp. 7767–7786, Apr. 1998. [Online]. Available: https://doi.org/10.1029/97jc01911
  31. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.   Cham: Springer International Publishing, 2015, pp. 234–241.
  32. R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in Proceedings of the 30th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, S. Dasgupta and D. McAllester, Eds., vol. 28, no. 3.   Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1310–1318. [Online]. Available: https://proceedings.mlr.press/v28/pascanu13.html
  33. A. Colin, R. Fablet, P. Tandeo, R. Husson, C. Peureux, N. Longépé, and A. Mouche, “Semantic segmentation of metoceanic processes using SAR observations and deep learning,” Remote Sensing, vol. 14, no. 4, p. 851, feb 2022. [Online]. Available: https://doi.org/10.3390/rs14040851
  34. I. de Gelis, A. Colin, and N. Longepe, “Prediction of categorized sea ice concentration from sentinel-1 SAR images based on a fully convolutional network,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5831–5841, 2021. [Online]. Available: https://doi.org/10.1109/jstars.2021.3074068
  35. L. de Montera, H. Berger, R. Husson, P. Appelghem, L. Guerlou, and M. Fragoso, “High-resolution offshore wind resource assessment at turbine hub height with sentinel-1 synthetic aperture radar (SAR) data and machine learning,” Wind Energy Science, vol. 7, no. 4, pp. 1441–1453, Jul. 2022. [Online]. Available: https://doi.org/10.5194/wes-7-1441-2022
  36. E. W. Peterson and J. P. Hennessey, “On the use of power laws for estimates of wind power potential,” Journal of Applied Meteorology, vol. 17, no. 3, pp. 390–394, Mar. 1978. [Online]. Available: https://doi.org/10.1175/1520-0450(1978)017¡0390:otuopl¿2.0.co;2

Summary

We haven't generated a summary for this paper yet.