Rain regime segmentation of Sentinel-1 observation learning from NEXRAD collocations with Convolution Neural Networks (2207.07333v3)
Abstract: Remote sensing of rainfall events is critical for both operational and scientific needs, including for example weather forecasting, extreme flood mitigation, water cycle monitoring, etc. Ground-based weather radars, such as NOAA's Next-Generation Radar (NEXRAD), provide reflectivity and precipitation estimates of rainfall events. However, their observation range is limited to a few hundred kilometers, prompting the exploration of other remote sensing methods, particularly over the open ocean, that represents large areas not covered by land-based radars. Here we propose a deep learning approach to deliver a three-class segmentation of SAR observations in terms of rainfall regimes. SAR satellites deliver very high resolution observations with a global coverage. This seems particularly appealing to inform fine-scale rain-related patterns, such as those associated with convective cells with characteristic scales of a few kilometers. We demonstrate that a convolutional neural network trained on a collocated Sentinel-1/NEXRAD dataset clearly outperforms state-of-the-art filtering schemes such as the Koch's filters. Our results indicate high performance in segmenting precipitation regimes, delineated by thresholds at 24.7, 31.5, and 38.8 dBZ. Compared to current methods that rely on Koch's filters to draw binary rainfall maps, these multi-threshold learning-based models can provide rainfall estimation. They may be of interest in improving high-resolution SAR-derived wind fields, which are degraded by rainfall, and provide an additional tool for the study of rain cells.
- X. Li, J. R. Mecikalski, J. Srikishen, B. Zavodsky, and W. A. Petersen, “Assimilation of GPM rain rate products with GSI data assimilation system for heavy and light precipitation events,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 5, May 2020. [Online]. Available: https://doi.org/10.1029/2019ms001618
- H. Douville, K. Raghavan, J. Renwick, R. Allan, P. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T. Gan, J. Gergis, D. Jiang, A. Khan, W. P. Mba, D. Rosenfeld, J. Tierney, and O. Zolina, “2021 : Water cycle changes,” in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021.
- E. de Coning, “Optimizing satellite-based precipitation estimation for nowcasting of rainfall and flash flood events over the south african domain,” Remote Sensing, vol. 5, no. 11, pp. 5702–5724, Nov. 2013. [Online]. Available: https://doi.org/10.3390/rs5115702
- F. S. Marzano, G. Rivolta, E. Coppola, B. Tomassetti, and M. Verdecchia, “Rainfall nowcasting from multisatellite passive-sensor images using a recurrent neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, pp. 3800–3812, Nov. 2007. [Online]. Available: https://doi.org/10.1109/tgrs.2007.903685
- K. Topouzelis and D. Kitsiou, “Detection and classification of mesoscale atmospheric phenomena above sea in SAR imagery,” Remote Sensing of Environment, vol. 160, pp. 263–272, Apr. 2015. [Online]. Available: https://doi.org/10.1016/j.rse.2015.02.006
- A. Ayet, N. Rascle, B. Chapron, F. Couvreux, and L. Terray, “Uncovering air-sea interaction in oceanic submesoscale frontal regions using high-resolution satellite observations,” US Clivar variations, vol. 19, no. 1, 2021.
- J. S. Marshall, R. C. Langille, and W. M. K. Palmer, “MEASUREMENT OF RAINFALL BY RADAR,” Journal of Meteorology, vol. 4, no. 6, pp. 186–192, Dec. 1947. [Online]. Available: https://doi.org/10.1175/1520-0469(1947)004<0186:morbr>2.0.co;2
- J. Zhang, L. Tang, S. Cocks, P. Zhang, A. Ryzhkov, K. Howard, C. Langston, and B. Kaney, “A dual-polarization radar synthetic QPE for operations,” Journal of Hydrometeorology, vol. 21, no. 11, pp. 2507–2521, Nov. 2020. [Online]. Available: https://doi.org/10.1175/jhm-d-19-0194.1
- G. Liu, “SATELLITE REMOTE SENSING |||| precipitation,” in Encyclopedia of Atmospheric Sciences. Elsevier, 2003, pp. 1972–1979. [Online]. Available: https://doi.org/10.1016/b0-12-227090-8/00352-3
- S. SETO, T. IGUCHI, R. MENEGHINI, J. AWAKA, T. KUBOTA, T. MASAKI, and N. TAKAHASHI, “The precipitation rate retrieval algorithms for the GPM dual-frequency precipitation radar,” Journal of the Meteorological Society of Japan. Ser. II, vol. 99, no. 2, pp. 205–237, 2021. [Online]. Available: https://doi.org/10.2151/jmsj.2021-011
- G. J. Huffman, D. T. Bolvin, D. Braithwaite, K.-L. Hsu, R. J. Joyce, C. Kidd, E. J. Nelkin, S. Sorooshian, E. F. Stocker, J. Tan, D. B. Wolff, and P. Xie, “Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG),” in Advances in Global Change Research. Springer International Publishing, 2020, pp. 343–353. [Online]. Available: https://doi.org/10.1007/978-3-030-24568-9_19
- R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution,” Journal of Hydrometeorology, vol. 5, no. 3, pp. 487–503, Jun. 2004. [Online]. Available: https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2
- C. Melshelmer, W. Alpers, and M. Gade, “Investigation of multifrequency/multipolarization radar signatures of rain cells, derived from sir-c/x-sar data,” in IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, vol. 2, 1996, pp. 1370–1372 vol.2.
- P. Clemente-Colon, P. C. Manousos, W. G. Pichel, and K. S. Friedman, “Observations of Hurricane Bonnie in spaceborne synthetic aperture radar (SAR) and next-generation Doppler weather radar (NEXRAD),” in Satellite Remote Sensing of Clouds and the Atmosphere IV, J. E. Russell, Ed., vol. 3867, International Society for Optics and Photonics. SPIE, 1999, pp. 63 – 70. [Online]. Available: https://doi.org/10.1117/12.373044
- I.-I. Lin, W. Alpers, V. Khoo, H. Lim, T. Lim, and D.Kasilingam, “An ers-1 synthetic aperture radar image of a tropical squall line compared with weather radar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 5, pp. 937–945, 2001.
- C. Melsheimer, W. Alpers, and M. Gade, “Simultaneous observations of rain cells over the ocean by the synthetic aperture radar aboard the ers satellites and by surface-based weather radars,” Journal of Geophysical Research, vol. 106, pp. 4665–4678, 03 2001.
- M. Portabella and A. Stoffelen, “Rain detection and quality control of SeaWinds,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 7, pp. 1171–1183, Jul. 2001. [Online]. Available: https://doi.org/10.1175/1520-0426(2001)018<1171:rdaqco>2.0.co;2
- J. A. Nystuen, “A note on the attenuation of surface gravity waves by rainfall,” Journal of Geophysical Research, vol. 95, no. C10, p. 18353, 1990. [Online]. Available: https://doi.org/10.1029/jc095ic10p18353
- E. Attema, P. Snoeij, M. Davidson, N. Floury, G. Levrini, B. Rommen, and B. Rosich, “The european GMES sentinel-1 radar mission,” in IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. [Online]. Available: https://doi.org/10.1109/igarss.2008.4778801
- D. E. Weissman and M. A. Bourassa, “Measurements of the effect of rain-induced sea surface roughness on the QuikSCAT scatterometer radar cross section,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, pp. 2882–2894, Oct. 2008. [Online]. Available: https://doi.org/10.1109/tgrs.2008.2001032
- X. Chen, W. Huang, C. Zhao, and Y. Tian, “Rain detection from x-band marine radar images: A support vector machine-based approach,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 2115–2123, Mar. 2020. [Online]. Available: https://doi.org/10.1109/tgrs.2019.2953143
- F. Xu, X. Li, P. Wang, J. Yang, W. G. Pichel, and Y.-Q. Jin, “A backscattering model of rainfall over rough sea surface for synthetic aperture radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 6, pp. 3042–3054, Jun. 2015. [Online]. Available: https://doi.org/10.1109/tgrs.2014.2367654
- C. Wang, A. Mouche, P. Tandeo, J. E. Stopa, N. Longépé, G. Erhard, R. C. Foster, D. Vandemark, and B. Chapron, “A labelled ocean SAR imagery dataset of ten geophysical phenomena from sentinel-1 wave mode,” Geoscience Data Journal, vol. 6, no. 2, pp. 105–115, Jul. 2019. [Online]. Available: https://doi.org/10.1002/gdj3.73
- A. Colin, R. Fablet, P. Tandeo, R. Husson, C. Peureux, N. Longépé, and A. Mouche, “Semantic segmentation of metoceanic processes using SAR observations and deep learning,” Remote Sensing, vol. 14, no. 4, p. 851, Feb. 2022. [Online]. Available: https://doi.org/10.3390/rs14040851
- W. Alpers, B. Zhang, A. Mouche, K. Zeng, and P. W. Chan, “Rain footprints on c-band synthetic aperture radar images of the ocean - revisited,” Remote Sensing of Environment, vol. 187, pp. 169–185, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.rse.2016.10.015
- Y. Zhao, N. Longépé, A. Mouche, and R. Husson, “Automated rain detection by dual-polarization sentinel-1 data,” Remote Sensing, vol. 13, no. 16, 2021. [Online]. Available: https://www.mdpi.com/2072-4292/13/16/3155
- X.-M. Li, T. Zhang, B. Huang, and T. Jia, “Capabilities of chinese gaofen-3 synthetic aperture radar in selected topics for coastal and ocean observations,” Remote Sensing, vol. 10, no. 12, p. 1929, Nov. 2018. [Online]. Available: https://doi.org/10.3390/rs10121929
- A. A. Thompson, “Overview of the radarsat constellation mission,” Canadian Journal of Remote Sensing, vol. 41, no. 5, pp. 401–407, Sep. 2015. [Online]. Available: https://doi.org/10.1080/07038992.2015.1104633
- T. Misra and A. S. Kirankumar, “Risat-1: Configuration and performance evaluation,” in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). IEEE, Aug. 2014. [Online]. Available: https://doi.org/10.1109/ursigass.2014.6929612
- C. Wang, P. Tandeo, A. Mouche, J. E. Stopa, V. Gressani, N. Longepe, D. Vandemark, R. C. Foster, and B. Chapron, “Classification of the global sentinel-1 SAR vignettes for ocean surface process studies,” Remote Sensing of Environment, vol. 234, p. 111457, Dec. 2019. [Online]. Available: https://doi.org/10.1016/j.rse.2019.111457
- A. Mouche, P. Vincent, and G. Hajduch, “Sentinel-1 ocean wind fields (owi) algorithm definition,” Tech. Rep., 11 2017. [Online]. Available: https://sentinels.copernicus.eu/documents/247904/2142675/Thermal-Denoising-of-Products-Generated-by-Sentinel-1-IPF.pdf
- F. D. Zan and A. M. Guarnieri, “Topsar: Terrain observation by progressive scans,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2352–2360, 2006.
- P. Vincent, M. Bourbigot, H. Johnsen, and R. Piantanida, “Sentinel-1 product specification,” https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Specification, 2020.
- J.-W. Park, A. A. Korosov, M. Babiker, S. Sandven, and J.-S. Won, “Efficient thermal noise removal for sentinel-1 TOPSAR cross-polarization channel,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3, pp. 1555–1565, Mar. 2018. [Online]. Available: https://doi.org/10.1109/tgrs.2017.2765248
- H. Hersbach, “Comparison of c-band scatterometer CMOD5.n equivalent neutral winds with ECMWF,” Journal of Atmospheric and Oceanic Technology, vol. 27, no. 4, pp. 721–736, Apr. 2010. [Online]. Available: https://doi.org/10.1175/2009jtecho698.1
- N. R. DALEZIOS, “Digital processing of weather radar signals for rainfall estimation,” International Journal of Remote Sensing, vol. 11, no. 9, pp. 1561–1569, Sep. 1990. [Online]. Available: https://doi.org/10.1080/01431169008955114
- S. Williamson, “Doppler radar meteorological observations. part b, doppler radar theory and meteorology,” FCM-H11B-2005, Office of the Federal Coordinator for Meteorological Services and Supporting Research, Tech. Rep., 2015.
- W. Koch, “Directional analysis of SAR images aiming at wind direction,” Remote Sens. Environ., vol. 42, no. 4, pp. 702–710, Apr. 2004. [Online]. Available: https://doi.org/10.1109/tgrs.2003.818811
- O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351. Springer, 2015, pp. 234–241, (available on arXiv:1505.04597 [cs.CV]). [Online]. Available: http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
- I. de Gélis, A. Colin, and N. Longépé, “Prediction of categorized sea ice concentration from sentinel-1 sar images based on a fully convolutional network,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5831–5841, 2021.
- W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive field in deep convolutional neural networks,” 2017.
- Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” CoRR, vol. abs/1206.5533, 2012. [Online]. Available: http://arxiv.org/abs/1206.5533