Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperspectral Unmixing via Deep Autoencoder Networks for a Generalized Linear-Mixture/Nonlinear-Fluctuation Model (1904.13017v2)

Published 30 Apr 2019 in eess.IV

Abstract: Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed individual pixels. Recently, nonlinear spectral unmixing has received particular attention because a linear mixture is not appropriate under many conditions. However, existing nonlinear unmixing approaches are often based on specific assumptions regarding the inherent nonlinearity, and they can be ineffective when applied to conditions deviating from the original assumptions. Therefore, these approaches are not well suited to scenes with unknown nonlinearity characteristics. This paper presents an unsupervised nonlinear spectral unmixing method based on a deep autoencoder network that applies to a generalized linear-mixture/nonlinear fluctuation model, consisting of a linear mixture component and an additive nonlinear mixture component that depends on both endmembers and abundances. The proposed approach benefits from the universal modeling ability of deep neural networks to learn the inherent nonlinearity of the nonlinear mixture component from the data itself via the autoencoder network, rather than relying on an assumed form. Extensive experiments with numerically synthetic, labeled laboratory-created data and real airborne data, illustrate the generality and effectiveness of this approach compared with state-of-the-art methods.

Citations (49)

Summary

We haven't generated a summary for this paper yet.