Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Consistency of Fractional Graph-Laplacian Regularization in Semi-Supervised Learning with Finite Labels (2303.07818v2)

Published 14 Mar 2023 in math.ST and stat.TH

Abstract: Laplace learning is a popular machine learning algorithm for finding missing labels from a small number of labelled feature vectors using the geometry of a graph. More precisely, Laplace learning is based on minimising a graph-Dirichlet energy, equivalently a discrete Sobolev $\Wkp{2}{1}$ semi-norm, constrained to taking the values of known labels on a given subset. The variational problem is asymptotically ill-posed as the number of unlabeled feature vectors goes to infinity for finite given labels due to a lack of regularity in minimisers of the continuum Dirichlet energy in any dimension higher than one. In particular, continuum minimisers are not continuous. One solution is to consider higher-order regularisation, which is the analogue of minimising Sobolev $\Wkp{s}{2}$ semi-norms. In this paper we consider the asymptotics of minimising a graph variant of the Sobolev $\Wkp{s}{2}$ semi-norm with pointwise constraints. We show that, as expected, one needs $s>d/2$ where $d$ is the dimension of the data manifold. We also show that there must be an upper bound on the connectivity of the graph; that is, highly connected graphs lead to degenerate behaviour of the minimiser even when $s>d/2$.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.