Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Entanglement detection with trace polynomials (2303.07761v2)

Published 14 Mar 2023 in quant-ph

Abstract: We provide a systematic method for nonlinear entanglement detection based on trace polynomial inequalities. In particular, this allows to employ multi-partite witnesses for the detection of bipartite states, and vice versa. We identify witnesses for which linear detection of an entangled state fails, but for which nonlinear detection succeeds. With the trace polynomial formulation a great variety of witnesses arise from immamant inequalities, which can be implemented in the laboratory through randomized measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. I. Frérot, F. Baccari, and A. Acín, Unveiling quantum entanglement in many-body systems from partial information, PRX Quantum 3, 010342 (2022).
  2. O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
  3. G. Tóth and O. Gühne, Entanglement detection in the stabilizer formalism, Physical Review A 72, 022340 (2005).
  4. M. A. Jafarizadeh, M. Rezaee, and S. K. A. Seyed Yagoobi, Bell-state diagonal-entanglement witnesses, Physical Review A 72, 062106 (2005).
  5. R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Physical Review Letters 84, 2726 (2000).
  6. P. Horodecki, From limits of quantum operations to multicopy entanglement witnesses and state-spectrum estimation, Physical Review A 68, 052101 (2003).
  7. M. Kotowski, M. Kotowski, and M. Kuś, Universal nonlinear entanglement witnesses, Physical Review A 81, 062318 (2010).
  8. M. Gessner, A. Smerzi, and L. Pezzè, Metrological nonlinear squeezing parameter, Physical Review Letters 122, 090503 (2019).
  9. O. Gühne and N. Lütkenhaus, Nonlinear entanglement witnesses, Physical Review Letters 96, 170502 (2006).
  10. K. Chen and H.-K. Lo, Multipartite quantum cryptographic protocols with noisy GHZ states, Quantum Information and Computation 7 (2004).
  11. O. Gühne and M. Seevinck, Separability criteria for genuine multiparticle entanglement, New Journal of Physics 12, 053002 (2010).
  12. A. Gabriel, B. C. Hiesmayr, and M. Huber, Criterion for k-separability in mixed multipartite states, Quantum Info. Comput. 10, 829–836 (2010).
  13. This is the case if and only if the Schmidt rank of |ϕ+⟩ketsuperscriptitalic-ϕ\mathinner{|\phi^{+}\rangle}| italic_ϕ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ and |ψ⟩ket𝜓\mathinner{|\psi\rangle}| italic_ψ ⟩ are equal.
  14. M. Marcus and H. Minc, Generalized matrix functions, Transactions of the American Mathematical Society 116, 316 (1965).
  15. H. Maassen and B. Kümmerer, Entanglement of symmetric Werner states, Workshop: Mathematics of Quantum Information Theory, http://www.bjadres.nl/MathQuantWorkshop/Slides/SymmWernerHandout.pdf  (2019).
  16. F. Huber, Positive maps and trace polynomials from the symmetric group, Journal of Mathematical Physics 62, 022203 (2021).
  17. I. Klep, V. Magron, and J. Volčič, Optimization over trace polynomials, Annales Henri Poincaré 23, 67 (2021).
  18. R. Kueng, Quantum and classical information processing with tensors, Caltech CMS Lecture Notes , 6 (2019).
  19. B. Collins and P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Communications in Mathematical Physics 264, 773 (2006).
  20. C. Procesi, A note on the Formanek Weingarten function, Note di Matematica 41, 69 (2021).
  21. M. Horodecki and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Physical Review A 59, 4206 (1999).
  22. A. Müller-Hermes, D. Reeb, and M. Wolf, Positivity of linear maps under tensor powers, Journal of Mathematical Physics 57 (2015).
  23. M. van der Eyden, T. Netzer, and G. D. las Cuevas, Halos and undecidability of tensor stable positive maps, Journal of Physics A: Mathematical and Theoretical 55, 264006 (2022).
  24. I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2006).
  25. H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
  26. M. Keyl and R. F. Werner, Estimating the spectrum of a density operator, Physical Review A 64, 052311 (2001).
  27. M. Christandl and G. Mitchison, The spectra of quantum states and the Kronecker coefficients of the symmetric group, Communications in Mathematical Physics 261, 789 (2005).
  28. K. M. R. Audenaert, A digest on representation theory of the symmetric group (2006).
  29. F. Huber and H. Maassen, Matrix forms of immanant inequalities, arXiv:2103.04317  (2021).
  30. P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Physics Letters A 232, 333 (1997).
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com