Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Weight Assignment Scheme For Multi-task Learning (2303.07278v1)

Published 10 Mar 2023 in cs.LG

Abstract: Deep learning based models are used regularly in every applications nowadays. Generally we train a single model on a single task. However, we can train multiple tasks on a single model under multi-task learning settings. This provides us many benefits like lesser training time, training a single model for multiple tasks, reducing overfitting, improving performances etc. To train a model in multi-task learning settings we need to sum the loss values from different tasks. In vanilla multi-task learning settings we assign equal weights but since not all tasks are of similar difficulty we need to allocate more weight to tasks which are more difficult. Also improper weight assignment reduces the performance of the model. We propose a simple weight assignment scheme in this paper which improves the performance of the model and puts more emphasis on difficult tasks. We tested our methods performance on both image and textual data and also compared performance against two popular weight assignment methods. Empirical results suggest that our proposed method achieves better results compared to other popular methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aminul Huq (6 papers)
  2. Mst Tasnim Pervin (3 papers)

Summary

We haven't generated a summary for this paper yet.