Papers
Topics
Authors
Recent
2000 character limit reached

Learned Weight Sharing for Deep Multi-Task Learning by Natural Evolution Strategy and Stochastic Gradient Descent

Published 23 Mar 2020 in cs.LG and stat.ML | (2003.10159v1)

Abstract: In deep multi-task learning, weights of task-specific networks are shared between tasks to improve performance on each single one. Since the question, which weights to share between layers, is difficult to answer, human-designed architectures often share everything but a last task-specific layer. In many cases, this simplistic approach severely limits performance. Instead, we propose an algorithm to learn the assignment between a shared set of weights and task-specific layers. To optimize the non-differentiable assignment and at the same time train the differentiable weights, learning takes place via a combination of natural evolution strategy and stochastic gradient descent. The end result are task-specific networks that share weights but allow independent inference. They achieve lower test errors than baselines and methods from literature on three multi-task learning datasets.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.