Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Unscented Kalman Filter-Informed Neural Network for Vehicle Sideslip Angle Estimation (2303.05238v1)

Published 9 Mar 2023 in eess.SY and cs.SY

Abstract: This paper proposes a novel vehicle sideslip angle estimator, which uses the physical knowledge from an Unscented Kalman Filter (UKF) based on a non-linear single-track vehicle model to enhance the estimation accuracy of a Convolutional Neural Network (CNN). The model-based and data-driven approaches interact mutually, and both use the standard inertial measurement unit and the tyre forces measured by load sensing technology. CNN benefits from the UKF the capacity to leverage the laws of physics. Concurrently, the UKF uses the CNN outputs as sideslip angle pseudo-measurement and adaptive process noise parameters. The back-propagation through time algorithm is applied end-to-end to the CNN and the UKF to employ the mutualistic property. Using a large-scale experimental dataset of 216 manoeuvres containing a great diversity of vehicle behaviours, we demonstrate a significant improvement in the accuracy of the proposed architecture over the current state-of-art hybrid approach combined with model-based and data-driven techniques. In the case that a limited dataset is provided for the training phase, the proposed hybrid approach still guarantees estimation robustness.

Citations (10)

Summary

We haven't generated a summary for this paper yet.