Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Neural Network-based Unscented Kalman Filter for Robust Pose Tracking of Noncooperative Spacecraft (2206.03796v3)

Published 8 Jun 2022 in cs.RO and eess.SP

Abstract: This paper presents a neural network-based Unscented Kalman Filter (UKF) to estimate and track the pose (i.e., position and orientation) of a known, noncooperative, tumbling target spacecraft in a close-proximity rendezvous scenario. The UKF estimates the target's orbit and attitude relative to the servicer based on the pose information provided by a multi-task Convolutional Neural Network (CNN) from incoming monocular images of the target. In order to enable reliable tracking, the process noise covariance matrix of the UKF is tuned online using adaptive state noise compensation which leverages a newly developed closed-form process noise model for relative attitude dynamics. This paper also introduces the Satellite Hardware-In-the-loop Rendezvous Trajectories (SHIRT) dataset to enable comprehensive analyses of the performance and robustness of the proposed pipeline. SHIRT comprises the labeled images of two representative rendezvous trajectories in low Earth orbit created using both a graphics renderer and a robotic testbed. Specifically, the CNN is solely trained on synthetic data, whereas functionality and performance of the complete navigation pipeline are evaluated on real images from the robotic testbed. The proposed UKF is evaluated on SHIRT and is shown to have sub-decimeter-level position and degree-level orientation errors at steady-state.

Citations (22)

Summary

We haven't generated a summary for this paper yet.