Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Log-minor distributions and an application to estimating mean subsystem entropy (1901.09456v1)

Published 27 Jan 2019 in math.PR, cs.SI, math.RA, and physics.data-an

Abstract: A common task in physics, information theory, and other fields is the analysis of properties of subsystems of a given system. Given the covariance matrix $M$ of a system of $n$ coupled variables, the covariance matrices of the subsystems are principal submatrices of $M$. The rapid growth with $n$ of the set of principal submatrices makes it impractical to exhaustively study each submatrix for even modestly-sized systems. It is therefore of great interest to derive methods for approximating the distributions of important submatrix properties for a given matrix. Motivated by the importance of differential entropy as a systemic measure of disorder, we study the distribution of log-determinants of principal $k\times k$ submatrices when the covariance matrix has bounded condition number. We derive upper bounds for the right tail and the variance of the distribution of minors, and we use these in turn to derive upper bounds on the standard error of the sample mean of subsystem entropy. Our results demonstrate that, despite the rapid growth of the set of subsystems with $n$, the number of samples that are needed to bound the sampling error is asymptotically independent of $n$. Instead, it is sufficient to increase the number of samples in linear proportion to $k$ to achieve a desired sampling accuracy.

Summary

We haven't generated a summary for this paper yet.