Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Union vertex-distinguishing edge colorings (2303.02757v1)

Published 5 Mar 2023 in math.CO and cs.DM

Abstract: The union vertex-distinguishing chromatic index $\chi'\cup(G)$ of a graph $G$ is the smallest natural number $k$ such that the edges of $G$ can be assigned nonempty subsets of $[k]$ so that the union of the subsets assigned to the edges incident to each vertex is different. We prove that $\chi'\cup(G) \in \left{ \left\lceil \log_2\left(n +1\right) \right\rceil, \left\lceil \log_2\left(n +1\right) \right\rceil+1 \right}$ for a graph $G$ on $n$ vertices without a component of order at most two. This answers a question posed by Bousquet, Dailly, Duch^{e}ne, Kheddouci and Parreau, and independently by Chartrand, Hallas and Zhang.

Summary

We haven't generated a summary for this paper yet.