Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distinguishing numbers and distinguishing indices of oriented graphs (1910.12738v2)

Published 28 Oct 2019 in cs.DM and math.CO

Abstract: A distinguishing r-vertex-labelling (resp. r-edge-labelling) of an undirected graph G is a mapping $\lambda$ from the set of vertices (resp. the set of edges) of G to the set of labels {1,. .. , r} such that no non-trivial automorphism of G preserves all the vertex (resp. edge) labels. The distinguishing number D(G) and the distinguishing index D (G) of G are then the smallest r for which G admits a distinguishing r-vertex-labelling or r-edge-labelling, respectively. The distinguishing chromatic number D $\chi$ (G) and the distinguishing chromatic index D $\chi$ (G) are defined similarly, with the additional requirement that the corresponding labelling must be a proper colouring. These notions readily extend to oriented graphs, by considering arcs instead of edges. In this paper, we study the four corresponding parameters for oriented graphs whose underlying graph is a path, a cycle, a complete graph or a bipartite complete graph. In each case, we determine their minimum and maximum value, taken over all possible orientations of the corresponding underlying graph, except for the minimum values for unbalanced complete bipartite graphs K m,n with m = 2, 3 or 4 and n > 3, 6 or 13, respectively, or m $\ge$ 5 and n > 2 m -- m 2 , for which we only provide upper bounds.

Citations (4)

Summary

We haven't generated a summary for this paper yet.