Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Rate Optimal Regret for Adversarial Contextual MDPs Using Online Function Approximation (2303.01464v2)

Published 2 Mar 2023 in cs.LG

Abstract: We present the OMG-CMDP! algorithm for regret minimization in adversarial Contextual MDPs. The algorithm operates under the minimal assumptions of realizable function class and access to online least squares and log loss regression oracles. Our algorithm is efficient (assuming efficient online regression oracles), simple and robust to approximation errors. It enjoys an $\widetilde{O}(H{2.5} \sqrt{ T|S||A| ( \mathcal{R}(\mathcal{O}) + H \log(\delta{-1}) )})$ regret guarantee, with $T$ being the number of episodes, $S$ the state space, $A$ the action space, $H$ the horizon and $\mathcal{R}(\mathcal{O}) = \mathcal{R}(\mathcal{O}{\mathrm{sq}}\mathcal{F}) + \mathcal{R}(\mathcal{O}{\mathrm{log}}\mathcal{P})$ is the sum of the regression oracles' regret, used to approximate the context-dependent rewards and dynamics, respectively. To the best of our knowledge, our algorithm is the first efficient rate optimal regret minimization algorithm for adversarial CMDPs that operates under the minimal standard assumption of online function approximation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.