Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reaction-diffusion equations on metric graphs with edge noise (2303.01269v1)

Published 2 Mar 2023 in math.DS, math.AP, and math.PR

Abstract: We investigate stochastic reaction-diffusion equations on finite metric graphs. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given. The vertex conditions are the standard continuity and generalized, non-local Neumann-Kirchhoff-type law in each vertex. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. The model is a generalization of the problem in [14] where polynomials with much more restrictive assumptions are considered and no first order differential operator is involved. We utilize the semigroup approach from [15] to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.