Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frauds Bargain Attack: Generating Adversarial Text Samples via Word Manipulation Process (2303.01234v2)

Published 1 Mar 2023 in cs.CL and cs.AI

Abstract: Recent research has revealed that NLP models are vulnerable to adversarial examples. However, the current techniques for generating such examples rely on deterministic heuristic rules, which fail to produce optimal adversarial examples. In response, this study proposes a new method called the Fraud's Bargain Attack (FBA), which uses a randomization mechanism to expand the search space and produce high-quality adversarial examples with a higher probability of success. FBA uses the Metropolis-Hasting sampler, a type of Markov Chain Monte Carlo sampler, to improve the selection of adversarial examples from all candidates generated by a customized stochastic process called the Word Manipulation Process (WMP). The WMP method modifies individual words in a contextually-aware manner through insertion, removal, or substitution. Through extensive experiments, this study demonstrates that FBA outperforms other methods in terms of attack success rate, imperceptibility and sentence quality.

Citations (4)

Summary

We haven't generated a summary for this paper yet.