Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Planning for Attacker Entrapment in Adversarial Settings (2303.00822v2)

Published 1 Mar 2023 in cs.AI

Abstract: In this paper, we propose a planning framework to generate a defense strategy against an attacker who is working in an environment where a defender can operate without the attacker's knowledge. The objective of the defender is to covertly guide the attacker to a trap state from which the attacker cannot achieve their goal. Further, the defender is constrained to achieve its goal within K number of steps, where K is calculated as a pessimistic lower bound within which the attacker is unlikely to suspect a threat in the environment. Such a defense strategy is highly useful in real world systems like honeypots or honeynets, where an unsuspecting attacker interacts with a simulated production system while assuming it is the actual production system. Typically, the interaction between an attacker and a defender is captured using game theoretic frameworks. Our problem formulation allows us to capture it as a much simpler infinite horizon discounted MDP, in which the optimal policy for the MDP gives the defender's strategy against the actions of the attacker. Through empirical evaluation, we show the merits of our problem formulation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Brittany Cates (1 paper)
  2. Anagha Kulkarni (13 papers)
  3. Sarath Sreedharan (41 papers)

Summary

We haven't generated a summary for this paper yet.