Full large deviation principles for the largest eigenvalue of sub-Gaussian Wigner matrices (2302.14823v2)
Abstract: We establish precise upper-tail asymptotics and large deviation principles for the rightmost eigenvalue $\lambda_1$ of Wigner matrices with sub-Gaussian entries. In contrast to the case of heavier tails, where deviations of $\lambda_1$ are due to the appearance of a few large entries, and the sharp sub-Gaussian case that is governed by the collective deviation of entries in a delocalized rank-one pattern, we show that the general sub-Gaussian case is determined by a mixture of localized and delocalized effects. Our key result is a finite-$N$ approximation for the upper tail of $\lambda_1$ by an optimization problem involving \emph{restricted annealed free energies} for a spherical spin glass model. This new type of argument allows us to derive full large deviation principles when the log-Laplace transform of the entries' distribution $\mu$ has bounded second derivative, whereas previous results required much more restrictive assumptions, namely sharp sub-Gaussianity and symmetry, or only covered certain ranges of deviations. We show that the sharp sub-Gaussian condition characterizes measures $\mu$ for which the rate function coincides with that of the Gaussian Orthogonal Ensemble (GOE). When $\mu$ is not sharp sub-Gaussian, at a certain distance from the bulk of the spectrum there is a transition from the GOE rate function to a non-universal rate function depending on $\mu$, and this transition coincides with the onset of a localization phenomenon for the associated eigenvector.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.