Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle-based Online Bayesian Sampling (2302.14796v1)

Published 28 Feb 2023 in cs.LG

Abstract: Online optimization has gained increasing interest due to its capability of tracking real-world streaming data. Although online optimization methods have been widely studied in the setting of frequentist statistics, few works have considered online optimization with the Bayesian sampling problem. In this paper, we study an Online Particle-based Variational Inference (OPVI) algorithm that uses a set of particles to represent the approximating distribution. To reduce the gradient error caused by the use of stochastic approximation, we include a sublinear increasing batch-size method to reduce the variance. To track the performance of the OPVI algorithm with respect to a sequence of dynamically changing target posterior, we provide a detailed theoretical analysis from the perspective of Wasserstein gradient flow with a dynamic regret. Synthetic and Bayesian Neural Network experiments show that the proposed algorithm achieves better results than naively applying existing Bayesian sampling methods in the online setting.

Citations (7)

Summary

We haven't generated a summary for this paper yet.