Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory (1809.01293v5)

Published 5 Sep 2018 in stat.ML and cs.LG

Abstract: Particle-optimization-based sampling (POS) is a recently developed effective sampling technique that interactively updates a set of particles. A representative algorithm is the Stein variational gradient descent (SVGD). We prove, under certain conditions, SVGD experiences a theoretical pitfall, {\it i.e.}, particles tend to collapse. As a remedy, we generalize POS to a stochastic setting by injecting random noise into particle updates, thus yielding particle-optimization sampling (SPOS). Notably, for the first time, we develop {\em non-asymptotic convergence theory} for the SPOS framework (related to SVGD), characterizing algorithm convergence in terms of the 1-Wasserstein distance w.r.t.! the numbers of particles and iterations. Somewhat surprisingly, with the same number of updates (not too large) for each particle, our theory suggests adopting more particles does not necessarily lead to a better approximation of a target distribution, due to limited computational budget and numerical errors. This phenomenon is also observed in SVGD and verified via an experiment on synthetic data. Extensive experimental results verify our theory and demonstrate the effectiveness of our proposed framework.

Citations (44)

Summary

We haven't generated a summary for this paper yet.