Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints (2302.14194v2)
Abstract: We conjecture that a convex polytope is uniquely determined up to isometry by its edge-graph, edge lengths and the collection of distances of its vertices to some arbitrary interior point, across all dimensions and all combinatorial types. We conjecture even stronger that for two polytopes $P\subset\mathbb Rd$ and $Q\subset\mathbb Re$ with the same edge-graph it is not possible that $Q$ has longer edges than $P$ while also having smaller vertex-point distances. We develop techniques to attack this question and verify it in three relevant special cases: if $P$ and $Q$ are centrally symmetric, if $Q$ is a slight perturbation of $P$, and if $P$ and $Q$ are combinatorially equivalent. In the first two cases the statements stay true if we replace $Q$ by some graph embedding $q\colon V(G_P)\to\mathbb Re$ of the edge-graph $G_P$ of $P$, which can be interpreted as local resp. universal rigidity of certain tensegrity frameworks. We also establish that a polytope is uniquely determined up to affine equivalence by its edge-graph, edge lengths and the Wachspress coordinates of an arbitrary interior point. We close with a broad overview of related and subsequent questions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.