Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Impact of decoherence on the fidelity of quantum gates leaving the computational subspace (2302.13885v3)

Published 27 Feb 2023 in quant-ph

Abstract: The fidelity of quantum operations is often limited by incoherent errors, which typically can be modeled by fundamental Markovian noise processes such as amplitude damping and dephasing. In Phys. Rev. Lett. 129, 150504 (2022; https://doi.org/10.1103/PhysRevLett.129.150504), we presented an analytical result for the average gate fidelity of a general multiqubit operation in terms of the dissipative rates and the corresponding Lindblad jump operators, provided that the operation remains in the computational subspace throughout the time evolution. Here we generalize this expression for the average gate fidelity to include the cases where the system state temporarily leaves the computational subspace during the gate. Such gate mechanisms are integral to several quantum-computing platforms, and our formula is applicable to all of them; as examples, we employ it for the two-qubit controlled-Z gate in both superconducting qubits and neutral atoms. We also obtain the average gate fidelity for simultaneous operations applied in multiqubit systems. These results are useful for understanding the error budgets of quantum gates while scaling up quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. G. Wendin, Quantum information processing with superconducting circuits: a review, Reports on Progress in Physics 80, 106001 (2017), arXiv:1610.02208 .
  2. H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with trapped ions, Physics Reports 469, 155 (2008), arXiv:0809.4368 .
  3. F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum information processing: a review, Reports on Progress in Physics 82, 016001 (2019), arXiv:1803.02790 .
  4. R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21, 467 (1982).
  5. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Reviews of Modern Physics 86, 153 (2014), arXiv:1308.6253 .
  6. A. Montanaro, Quantum algorithms: an overview, npj Quantum Information 2, 15023 (2016), arXiv:1511.04206 .
  7. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018), arXiv:1801.00862 .
  8. R. Orús, S. Mugel, and E. Lizaso, Quantum computing for finance: Overview and prospects, Reviews in Physics 4, 100028 (2019), arXiv:1807.03890 .
  9. M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Physics Letters A 303, 249 (2002), arXiv:0205035 [quant-ph] .
  10. J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj Quantum Information 3, 2 (2017), arXiv:1510.04375 .
  11. E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and robust randomized benchmarking of quantum processes, Physical Review Letters 106, 180504 (2011).
  12. A. N. Korotkov, Error matrices in quantum process tomography (2013), arXiv:1309.6405 .
  13. Y. R. Sanders, J. J. Wallman, and B. C. Sanders, Bounding quantum gate error rate based on reported average fidelity, New Journal of Physics 18, 012002 (2016), arXiv:1501.04932 .
  14. J. Berberich, D. Fink, and C. Holm, Robustness of quantum algorithms against coherent control errors (2023), arXiv:2303.00618 .
  15. Y. Zhou, E. M. Stoudenmire, and X. Waintal, What Limits the Simulation of Quantum Computers?, Physical Review X 10, 041038 (2020), arXiv:2002.07730 .
  16. T. Tomesh, N. Allen, and Z. Saleem, Quantum-classical tradeoffs and multi-controlled quantum gate decompositions in variational algorithms (2022), arXiv:2210.04378 .
  17. G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
  18. B. M. Villegas-Martínez, F. Soto-Eguibar, and H. M. Moya-Cessa, Application of Perturbation Theory to a Master Equation, Advances in Mathematical Physics 2016, 9265039 (2016).
  19. R. Cabrera and W. E. Baylis, Average fidelity in n-qubit systems, Physics Letters A 368, 25 (2007).
  20. Supplementary Material.
  21. C. J. Wood and J. M. Gambetta, Quantification and characterization of leakage errors, Physical Review A 97, 032306 (2018), arXiv:1704.03081 .
  22. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Reviews of Modern Physics 82, 2313 (2010), arXiv:0909.4777 .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com