Newton-type algorithms for inverse optimization II: weighted span objective (2302.13414v2)
Abstract: In inverse optimization problems, the goal is to modify the costs in an underlying optimization problem in such a way that a given solution becomes optimal, while the difference between the new and the original cost functions, called the deviation vector, is minimized with respect to some objective function. The $\ell_1$- and $\ell_\infty$-norms are standard objectives used to measure the size of the deviation. Minimizing the $\ell_1$-norm is a natural way of keeping the total change of the cost function low, while the $\ell_\infty$-norm achieves the same goal coordinate-wise. Nevertheless, none of these objectives is suitable to provide a balanced or fair change of the costs. In this paper, we initiate the study of a new objective that measures the difference between the largest and the smallest weighted coordinates of the deviation vector, called the weighted span. We give a min-max characterization for the minimum weighted span of a feasible deviation vector, and provide a Newton-type algorithm for finding one that runs in strongly polynomial time in the case of unit weights.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.