Hypergeometric Feynman Integrals (2302.13184v1)
Abstract: In this thesis we will study Feynman integrals from the perspective of A-hypergeometric functions, a generalization of hypergeometric functions which goes back to Gelfand, Kapranov, Zelevinsky (GKZ) and their collaborators. This point of view was recently initiated by the works [74] and [150]. Inter alia, we want to provide here a concise summary of the mathematical foundations of A-hypergeometric theory in order to substantiate this viewpoint. This overview will concern aspects of polytopal geometry, multivariate discriminants as well as holonomic D-modules. As we will subsequently show, every scalar Feynman integral is an A-hypergeometric function. Furthermore, all coefficients of the Laurent expansion as appearing in dimensional and analytical regularization can be expressed by A-hypergeometric functions as well. Moreover, we can derive an explicit formula for series representations of each Feynman integrals, which is in particular suitable for an algorithmic approach. In addition, the A-hypergeometric theory enables us to give a mathematically rigorous description of the analytic structure of Feynman integrals (also known as Landau variety) by means of principal A-determinants and A-discriminants. This description of the singular locus will also comprise the various second-type singularities. Furthermore, we will find contributions to the singular locus occurring in higher loop diagrams, which seem to have been overlooked in previous approaches. By means of the Horn-Kapranov-parameterization we also provide a very efficient way to determine parameterizations of Landau varieties. We furthermore present a new approach to study the sheet structure of multivalued Feynman integrals by use of coamoebas.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.