Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spectral Method for the Gravitational Perturbations of Black Holes: Schwarzschild Background Case (2302.11624v2)

Published 22 Feb 2023 in gr-qc

Abstract: We develop a novel technique through spectral decompositions to study the gravitational perturbations of a black hole, without needing to decouple the linearized field equations into master equations and separate their radial and angular dependence. We first spectrally decompose the metric perturbation in a Legendre and Chebyshev basis for the angular and radial sectors respectively, using input from the asymptotic behavior of the perturbation at spatial infinity and at the black hole event horizon. This spectral decomposition allows us to then transform the linearized Einstein equations (a coupled set of partial differential equations) into a linear matrix equation. By solving the linear matrix equation for its generalized eigenvalues, we can estimate the complex quasinormal frequencies of the fundamental mode and various overtones of the gravitational perturbations simultaneously and to high accuracy. We apply this technique to perturbations of a nonspinning, Schwarzschild black hole in general relativity and find the complex quasinormal frequencies of two fundamental modes and their first two overtones. We demonstrate that the technique is robust and accurate, in the Schwarzschild case leading to relative fractional errors of $\leq 10{-10} - 10{-8}$ for the fundamental modes, $\leq 10{-7} - 10{-6}$ for their first overtones, $\leq 10{-7} - 10{-4}$ for their second overtones. This method can be applied to any black hole spacetime, irrespective of its Petrov type, making the numerical technique extremely powerful in the study of black hole ringdown in and outside general relativity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (161)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett. 116, 241103 (2016b), arXiv:1606.04855 [gr-qc] .
  3. B. P. Abbott et al. (LIGO Scientific, VIRGO), “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys. Rev. Lett. 118, 221101 (2017a), [Erratum: Phys.Rev.Lett. 121, 129901 (2018)], arXiv:1706.01812 [gr-qc] .
  4. B. . P. . Abbott et al. (LIGO Scientific, Virgo), “GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence,” Astrophys. J. Lett. 851, L35 (2017b), arXiv:1711.05578 [astro-ph.HE] .
  5. B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Phys. Rev. Lett. 119, 141101 (2017c), arXiv:1709.09660 [gr-qc] .
  6. B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119, 161101 (2017d), arXiv:1710.05832 [gr-qc] .
  7. B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with GW150914,” Phys. Rev. Lett. 116, 221101 (2016c), [Erratum: Phys.Rev.Lett. 121, 129902 (2018)], arXiv:1602.03841 [gr-qc] .
  8. B. P. Abbott et al. (LIGO Scientific, Virgo), “Binary Black Hole Mergers in the first Advanced LIGO Observing Run,” Phys. Rev. X 6, 041015 (2016d), [Erratum: Phys.Rev.X 8, 039903 (2018)], arXiv:1606.04856 [gr-qc] .
  9. B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo, VIRGO), “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Rev. Rel. 21, 3 (2018), arXiv:1304.0670 [gr-qc] .
  10. B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
  11. B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. D 100, 104036 (2019b), arXiv:1903.04467 [gr-qc] .
  12. R. Abbott et al. (LIGO Scientific, Virgo), “GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses,” Phys. Rev. D 102, 043015 (2020a), arXiv:2004.08342 [astro-ph.HE] .
  13. R. Abbott et al. (LIGO Scientific, Virgo), “GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object,” Astrophys. J. Lett. 896, L44 (2020b), arXiv:2006.12611 [astro-ph.HE] .
  14. R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “Tests of General Relativity with GWTC-3,”  (2021), arXiv:2112.06861 [gr-qc] .
  15. T. Gupta, M. Herrero-Valea, D. Blas, E. Barausse, N. Cornish, K. Yagi,  and N. Yunes, “New binary pulsar constraints on Einstein-æther theory after GW170817,” Class. Quant. Grav. 38, 195003 (2021), arXiv:2104.04596 [gr-qc] .
  16. A. Cardenas-Avendano, S. Nampalliwar,  and N. Yunes, “Gravitational-wave versus X-ray tests of strong-field gravity,” Class. Quant. Grav. 37, 135008 (2020), arXiv:1912.08062 [gr-qc] .
  17. S. Perkins and N. Yunes, “Probing Screening and the Graviton Mass with Gravitational Waves,” Class. Quant. Grav. 36, 055013 (2019), arXiv:1811.02533 [gr-qc] .
  18. K. Chamberlain and N. Yunes, “Theoretical Physics Implications of Gravitational Wave Observation with Future Detectors,” Phys. Rev. D 96, 084039 (2017), arXiv:1704.08268 [gr-qc] .
  19. E. Barausse et al., “Prospects for Fundamental Physics with LISA,” Gen. Rel. Grav. 52, 81 (2020), arXiv:2001.09793 [gr-qc] .
  20. S. E. Perkins, N. Yunes,  and E. Berti, “Probing Fundamental Physics with Gravitational Waves: The Next Generation,” Phys. Rev. D 103, 044024 (2021b), arXiv:2010.09010 [gr-qc] .
  21. C. M. Will, “The confrontation between general relativity and experiment,” Living Reviews in Relativity 17, 4 (2014).
  22. I. H. Stairs, “Testing general relativity with pulsar timing,” Living Reviews in Relativity 6, 5 (2003).
  23. N. Wex and M. Kramer, “Gravity Tests with Radio Pulsars,” Universe 6, 156 (2020).
  24. N. Yunes and X. Siemens, ‘‘Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays,” Living Rev. Rel. 16, 9 (2013), arXiv:1304.3473 [gr-qc] .
  25. K. Yagi and L. C. Stein, “Black Hole Based Tests of General Relativity,” Class. Quant. Grav. 33, 054001 (2016), arXiv:1602.02413 [gr-qc] .
  26. R. Nair, S. Perkins, H. O. Silva,  and N. Yunes, “Fundamental Physics Implications for Higher-Curvature Theories from Binary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. Lett. 123, 191101 (2019), arXiv:1905.00870 [gr-qc] .
  27. E. Berti, K. Yagi, H. Yang,  and N. Yunes, “Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (II) Ringdown,” Gen. Rel. Grav. 50, 49 (2018b), arXiv:1801.03587 [gr-qc] .
  28. S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D 14, 2460–2473 (1976).
  29. S. W. Hawking, “The Information Paradox for Black Holes,”  (2015) arXiv:1509.01147 [hep-th] .
  30. S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J. 517, 565–586 (1999), arXiv:astro-ph/9812133 .
  31. A. G. Riess et al. (Supernova Search Team), “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998), arXiv:astro-ph/9805201 .
  32. Y. Sofue and V. Rubin, “Rotation curves of spiral galaxies,” Ann. Rev. Astron. Astrophys. 39, 137–174 (2001), arXiv:astro-ph/0010594 .
  33. G. Bertone and D. Hooper, “History of dark matter,” Rev. Mod. Phys. 90, 045002 (2018), arXiv:1605.04909 [astro-ph.CO] .
  34. A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).
  35. K. Petraki and R. R. Volkas, “Review of asymmetric dark matter,” Int. J. Mod. Phys. A 28, 1330028 (2013), arXiv:1305.4939 [hep-ph] .
  36. M. Gell-Mann and J. B. Hartle, “Time symmetry and asymmetry in quantum mechanics and quantum cosmology,” in 4th International Conference on Ion Sources (1991) arXiv:gr-qc/9304023 .
  37. S. H. S. Alexander, M. E. Peskin,  and M. M. Sheikh-Jabbari, “Leptogenesis from gravity waves in models of inflation,” Phys. Rev. Lett. 96, 081301 (2006).
  38. S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” eConf C0602061, 06 (2006), arXiv:hep-th/0601213 .
  39. S. Tsujikawa, “Modified gravity models of dark energy,” Lect. Notes Phys. 800, 99–145 (2010), arXiv:1101.0191 [gr-qc] .
  40. R. D. Peccei and H. R. Quinn, “Constraints imposed by cp conservation in the presence of pseudoparticles,” Physical Review D 16, 1791 (1977).
  41. S. Weinberg, ‘‘A new light boson?” Physical Review Letters 40, 223 (1978).
  42. F. Wilczek, “Problem of strong p and t invariance in the presence of instantons,” Physical Review Letters 40, 279 (1978).
  43. L. Roszkowski, E. M. Sessolo,  and S. Trojanowski, “WIMP dark matter candidates and searches—current status and future prospects,” Rept. Prog. Phys. 81, 066201 (2018), arXiv:1707.06277 [hep-ph] .
  44. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis,  and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54, 5049–5058 (1996a), arXiv:hep-th/9511071 .
  45. K.-i. Maeda, N. Ohta,  and Y. Sasagawa, “Black Hole Solutions in String Theory with Gauss-Bonnet Curvature Correction,” Phys. Rev. D 80, 104032 (2009), arXiv:0908.4151 [hep-th] .
  46. T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity,” Phys. Rev. Lett. 112, 251102 (2014), arXiv:1312.3622 [gr-qc] .
  47. S. Mignemi and N. R. Stewart, “Charged black holes in effective string theory,” Phys. Rev. D 47, 5259–5269 (1993), arXiv:hep-th/9212146 .
  48. S. Alexander and N. Yunes, “Chern-Simons Modified General Relativity,” Phys. Rept. 480, 1–55 (2009), arXiv:0907.2562 [hep-th] .
  49. R. Jackiw and S. Y. Pi, “Chern-Simons modification of general relativity,” Phys. Rev. D 68, 104012 (2003), arXiv:gr-qc/0308071 .
  50. S. H. S. Alexander and S. J. Gates, Jr., “Can the string scale be related to the cosmic baryon asymmetry?” JCAP 06, 018 (2006), arXiv:hep-th/0409014 .
  51. C. Eling, T. Jacobson,  and D. Mattingly, “Einstein-Aether theory,” in Deserfest: A Celebration of the Life and Works of Stanley Deser (2004) pp. 163–179, arXiv:gr-qc/0410001 .
  52. T. Jacobson, “Einstein-aether gravity: Theory and observational constraints,” in 4th Meeting on CPT and Lorentz Symmetry (2008) pp. 92–99, arXiv:0711.3822 [gr-qc] .
  53. M. Campista, R. Chan, M. F. A. da Silva, O. Goldoni, V. H. Satheeshkumar,  and J. F. V. da Rocha, “Vacuum solutions in the Einstein-Aether Theory,” Can. J. Phys. 98, 917–928 (2020), arXiv:1807.07553 [gr-qc] .
  54. Z. Haghani, T. Harko, H. R. Sepangi,  and S. Shahidi, “The scalar Einstein-aether theory,”   (2014), arXiv:1404.7689 [gr-qc] .
  55. G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10, 363–384 (1974).
  56. T. Kobayashi, “Horndeski theory and beyond: a review,” Rept. Prog. Phys. 82, 086901 (2019), arXiv:1901.07183 [gr-qc] .
  57. S. Jana, C. Dalang,  and L. Lombriser, “Horndeski theories and beyond from higher dimensions,” Class. Quant. Grav. 38, 025003 (2021), arXiv:2007.06907 [gr-qc] .
  58. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis,  and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54, 5049–5058 (1996b), arXiv:hep-th/9511071 .
  59. P. Kanti, “Black holes in theories with large extra dimensions: A Review,” Int. J. Mod. Phys. A 19, 4899–4951 (2004), arXiv:hep-ph/0402168 .
  60. C. B. Owen, N. Yunes,  and H. Witek, “Petrov type, principal null directions, and Killing tensors of slowly rotating black holes in quadratic gravity,” Phys. Rev. D 103, 124057 (2021), arXiv:2103.15891 [gr-qc] .
  61. P. Wagle, N. Yunes,  and H. O. Silva, “Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 105, 124003 (2022), arXiv:2103.09913 [gr-qc] .
  62. M. Srivastava, Y. Chen,  and S. Shankaranarayanan, “Analytical computation of quasinormal modes of slowly rotating black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 104, 064034 (2021), arXiv:2106.06209 [gr-qc] .
  63. V. Cardoso and L. Gualtieri, “Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity,” Phys. Rev. D 80, 064008 (2009), [Erratum: Phys.Rev.D 81, 089903 (2010)], arXiv:0907.5008 [gr-qc] .
  64. N. Yunes and C. F. Sopuerta, “Perturbations of Schwarzschild Black Holes in Chern-Simons Modified Gravity,” Phys. Rev. D 77, 064007 (2008), arXiv:0712.1028 [gr-qc] .
  65. D. Langlois, K. Noui,  and H. Roussille, “Black hole perturbations in modified gravity,” Phys. Rev. D 104, 124044 (2021a), arXiv:2103.14750 [gr-qc] .
  66. J. L. Blázquez-Salcedo, F. S. Khoo,  and J. Kunz, “Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes,” Phys. Rev. D 96, 064008 (2017), arXiv:1706.03262 [gr-qc] .
  67. L. Pierini and L. Gualtieri, “Quasi-normal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: the first order in rotation,” Phys. Rev. D 103, 124017 (2021), arXiv:2103.09870 [gr-qc] .
  68. L. Pierini and L. Gualtieri, “Quasi-normal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: the second order in rotation,”   (2022), arXiv:2207.11267 [gr-qc] .
  69. C. Molina, P. Pani, V. Cardoso,  and L. Gualtieri, “Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 81, 124021 (2010), arXiv:1004.4007 [gr-qc] .
  70. G. Carullo et al., “Empirical tests of the black hole no-hair conjecture using gravitational-wave observations,” Phys. Rev. D 98, 104020 (2018a), arXiv:1805.04760 [gr-qc] .
  71. G. Carullo, G. Riemenschneider, K. W. Tsang, A. Nagar,  and W. Del Pozzo, “GW150914 peak frequency: a novel consistency test of strong-field General Relativity,” Class. Quant. Grav. 36, 105009 (2019a), arXiv:1811.08744 [gr-qc] .
  72. R. Brito, A. Buonanno,  and V. Raymond, “Black-hole Spectroscopy by Making Full Use of Gravitational-Wave Modeling,” Phys. Rev. D 98, 084038 (2018a), arXiv:1805.00293 [gr-qc] .
  73. M. Isi, M. Giesler, W. M. Farr, M. A. Scheel,  and S. A. Teukolsky, “Testing the no-hair theorem with GW150914,” Phys. Rev. Lett. 123, 111102 (2019), arXiv:1905.00869 [gr-qc] .
  74. M. H.-Y. Cheung, L. W.-H. Poon, A. K.-W. Chung,  and T. G. F. Li, “Ringdown spectroscopy of rotating black holes pierced by cosmic strings,” JCAP 02, 040 (2021), arXiv:2002.01695 [gr-qc] .
  75. H. O. Silva, A. Ghosh,  and A. Buonanno, “Black-hole ringdown as a probe of higher-curvature gravity theories,”   (2022), arXiv:2205.05132 [gr-qc] .
  76. A. Ghosh, R. Brito,  and A. Buonanno, “Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations,” Phys. Rev. D 103, 124041 (2021), arXiv:2104.01906 [gr-qc] .
  77. G. Carullo et al., “Empirical tests of the black hole no-hair conjecture using gravitational-wave observations,” Phys. Rev. D 98, 104020 (2018b), arXiv:1805.04760 [gr-qc] .
  78. G. Carullo, G. Riemenschneider, K. W. Tsang, A. Nagar,  and W. Del Pozzo, “GW150914 peak frequency: a novel consistency test of strong-field General Relativity,” Class. Quant. Grav. 36, 105009 (2019b), arXiv:1811.08744 [gr-qc] .
  79. G. Carullo, W. Del Pozzo,  and J. Veitch, “Observational Black Hole Spectroscopy: A time-domain multimode analysis of GW150914,” Phys. Rev. D 99, 123029 (2019c), [Erratum: Phys.Rev.D 100, 089903 (2019)], arXiv:1902.07527 [gr-qc] .
  80. D. Laghi, G. Carullo, J. Veitch,  and W. Del Pozzo, “Quantum black hole spectroscopy: probing the quantum nature of the black hole area using LIGO–Virgo ringdown detections,” Class. Quant. Grav. 38, 095005 (2021), arXiv:2011.03816 [gr-qc] .
  81. G. Carullo, D. Laghi, J. Veitch,  and W. Del Pozzo, “Bekenstein-Hod Universal Bound on Information Emission Rate Is Obeyed by LIGO-Virgo Binary Black Hole Remnants,” Phys. Rev. Lett. 126, 161102 (2021), arXiv:2103.06167 [gr-qc] .
  82. A. K.-W. Chung and T. G. F. Li, “Phenomenological inclusion of alternative dispersion relations to the Teukolsky equation and its application to bounding the graviton mass with gravitational-wave measurements,” Phys. Rev. D 99, 124023 (2019), arXiv:1808.04050 [gr-qc] .
  83. A. K.-W. Chung, J. Gais, M. H.-Y. Cheung,  and T. G. F. Li, “Searching for ultralight bosons with supermassive black hole ringdown,” Phys. Rev. D 104, 084028 (2021), arXiv:2107.05492 [gr-qc] .
  84. R. Brito, A. Buonanno,  and V. Raymond, “Black-hole Spectroscopy by Making Full Use of Gravitational-Wave Modeling,” Phys. Rev. D 98, 084038 (2018b), arXiv:1805.00293 [gr-qc] .
  85. V. Cardoso and P. Pani, “Testing the nature of dark compact objects: a status report,” Living Rev. Rel. 22, 4 (2019), arXiv:1904.05363 [gr-qc] .
  86. T. Regge and J. A. Wheeler, “Stability of a schwarzschild singularity,” Phys. Rev. 108, 1063–1069 (1957).
  87. F. J. Zerilli, “Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics,” Phys. Rev. D 2, 2141–2160 (1970a).
  88. V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior problem.” Annals Phys. 88, 323–342 (1974).
  89. L. Barack and C. O. Lousto, “Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation,” Phys. Rev. D 72, 104026 (2005), arXiv:gr-qc/0510019 .
  90. S. R. Dolan and L. Barack, “Self-force via m𝑚mitalic_m-mode regularization and 2+1D evolution: III. Gravitational field on Schwarzschild spacetime,” Phys. Rev. D 87, 084066 (2013), arXiv:1211.4586 [gr-qc] .
  91. E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
  92. S. A. Teukolsky, ‘‘Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett. 29, 1114–1118 (1972).
  93. S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635–647 (1973).
  94. W. H. Press and S. A. Teukolsky, “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric,” Astrophys. J. 185, 649–674 (1973).
  95. S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation,” Astrophys. J. 193, 443–461 (1974).
  96. D. Li, P. Wagle, Y. Chen,  and N. Yunes, “Perturbations of spinning black holes beyond General Relativity: Modified Teukolsky equation,”   (2022a), arXiv:2206.10652 [gr-qc] .
  97. A. Hussain and A. Zimmerman, “An approach to computing spectral shifts for black holes beyond Kerr,”   (2022), arXiv:2206.10653 [gr-qc] .
  98. E. W. Leaver, “An analytic representation for the quasi normal modes of Kerr black holes,” Proc. Roy. Soc. Lond. A 402, 285–298 (1985a).
  99. A. Jansen, “Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes,” Eur. Phys. J. Plus 132, 546 (2017), arXiv:1709.09178 [gr-qc] .
  100. D. Langlois, K. Noui,  and H. Roussille, “Black hole perturbations in modified gravity,” Phys. Rev. D 104, 124044 (2021b), arXiv:2103.14750 [gr-qc] .
  101. D. Langlois, K. Noui,  and H. Roussille, “Asymptotics of linear differential systems and application to quasinormal modes of nonrotating black holes,” Phys. Rev. D 104, 124043 (2021c), arXiv:2103.14744 [gr-qc] .
  102. R. Monteiro, M. J. Perry,  and J. E. Santos, “Semiclassical instabilities of Kerr-AdS black holes,” Phys. Rev. D 81, 024001 (2010a), arXiv:0905.2334 [gr-qc] .
  103. O. J. C. Dias, P. Figueras, R. Monteiro, H. S. Reall,  and J. E. Santos, “An instability of higher-dimensional rotating black holes,” JHEP 05, 076 (2010a), arXiv:1001.4527 [hep-th] .
  104. V. Cardoso, O. J. C. Dias, G. S. Hartnett, L. Lehner,  and J. E. Santos, “Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS,” JHEP 04, 183 (2014a), arXiv:1312.5323 [hep-th] .
  105. V. Ferrari, L. Gualtieri,  and S. Marassi, “A New approach to the study of quasi-normal modes of rotating stars,” Phys. Rev. D 76, 104033 (2007a), arXiv:0709.2925 [gr-qc] .
  106. F. C. Eperon, B. Ganchev,  and J. E. Santos, “Plausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensions,” Phys. Rev. D 101, 041502 (2020), arXiv:1906.11257 [gr-qc] .
  107. O. J. C. Dias, H. S. Reall,  and J. E. Santos, “Strong cosmic censorship for charged de Sitter black holes with a charged scalar field,” Class. Quant. Grav. 36, 045005 (2019), arXiv:1808.04832 [gr-qc] .
  108. J. L. Ripley, “Computing the quasinormal modes and eigenfunctions for the Teukolsky equation using horizon penetrating, hyperboloidally compactified coordinates,” Class. Quant. Grav. 39, 145009 (2022), arXiv:2202.03837 [gr-qc] .
  109. V. Cardoso, O. J. C. Dias, G. S. Hartnett, L. Lehner,  and J. E. Santos, “Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS,” JHEP 04, 183 (2014b), arXiv:1312.5323 [hep-th] .
  110. J. L. Ripley, N. Loutrel, E. Giorgi,  and F. Pretorius, “Numerical computation of second order vacuum perturbations of Kerr black holes,” Phys. Rev. D 103, 104018 (2021), arXiv:2010.00162 [gr-qc] .
  111. O. J. C. Dias, M. Godazgar,  and J. E. Santos, “Linear Mode Stability of the Kerr-Newman Black Hole and Its Quasinormal Modes,” Phys. Rev. Lett. 114, 151101 (2015), arXiv:1501.04625 [gr-qc] .
  112. O. J. C. Dias, M. Godazgar, J. E. Santos, G. Carullo, W. Del Pozzo,  and D. Laghi, “Eigenvalue repulsions in the quasinormal spectra of the Kerr-Newman black hole,” Phys. Rev. D 105, 084044 (2022a), arXiv:2109.13949 [gr-qc] .
  113. O. J. C. Dias, M. Godazgar,  and J. E. Santos, “Eigenvalue repulsions and quasinormal mode spectra of Kerr-Newman: an extended study,” JHEP 07, 076 (2022b), arXiv:2205.13072 [gr-qc] .
  114. O. J. C. Dias, G. S. Hartnett,  and J. E. Santos, “Quasinormal modes of asymptotically flat rotating black holes,” Class. Quant. Grav. 31, 245011 (2014), arXiv:1402.7047 [hep-th] .
  115. J. E. Santos and B. Way, “Neutral Black Rings in Five Dimensions are Unstable,” Phys. Rev. Lett. 114, 221101 (2015), arXiv:1503.00721 [hep-th] .
  116. N. Loutrel, J. L. Ripley, E. Giorgi,  and F. Pretorius, “Second-order perturbations of kerr black holes: Formalism and reconstruction of the first-order metric,” Phys. Rev. D 103, 104017 (2021).
  117. L. Barack, “Gravitational self force in extreme mass-ratio inspirals,” Class. Quant. Grav. 26, 213001 (2009), arXiv:0908.1664 [gr-qc] .
  118. V. Toomani, P. Zimmerman, A. Spiers, S. Hollands, A. Pound,  and S. R. Green, “New metric reconstruction scheme for gravitational self-force calculations,” Class. Quant. Grav. 39, 015019 (2022), arXiv:2108.04273 [gr-qc] .
  119. G. B. Cook and M. Zalutskiy, “Gravitational perturbations of the Kerr geometry: High-accuracy study,” Phys. Rev. D 90, 124021 (2014), arXiv:1410.7698 [gr-qc] .
  120. E. Berti, “Black hole perturbation therory: lectures notes of ICTS Summer School,”   (2016).
  121. F. J. Zerilli, “Effective potential for even parity Regge-Wheeler gravitational perturbation equations,” Phys. Rev. Lett. 24, 737–738 (1970b).
  122. P. L. Chrzanowski, “Vector potential and metric perturbations of a rotating black hole,” Phys. Rev. D 11, 2042–2062 (1975a).
  123. P. Pani, “Advanced Methods in Black-Hole Perturbation Theory,” Int. J. Mod. Phys. A 28, 1340018 (2013), arXiv:1305.6759 [gr-qc] .
  124. M. Coleman Miller and N. Yunes, Gravitational Waves in Physics and Astrophysics (IOP, 2021).
  125. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Books on Mathematics (Dover Publications, 2018).
  126. M. Chugunova and D. Pelinovsky, “On the uniform convergence of the chebyshev interpolants for solitons,” Mathematics and Computers in Simulation 80, 794–803 (2009), nonlinear Waves: Computation and Theory VIII.
  127. R. Monteiro, M. J. Perry,  and J. E. Santos, “Semiclassical instabilities of Kerr-AdS black holes,” Phys. Rev. D 81, 024001 (2010b), arXiv:0905.2334 [gr-qc] .
  128. O. J. C. Dias, P. Figueras, R. Monteiro, J. E. Santos,  and R. Emparan, “Instability and new phases of higher-dimensional rotating black holes,” Phys. Rev. D 80, 111701 (2009b), arXiv:0907.2248 [hep-th] .
  129. V. Ferrari, L. Gualtieri,  and S. Marassi, “A new approach to the study of quasi-normal modes of rotating stars,” Phys. Rev. D 76, 104033 (2007b), arXiv:0709.2925 [gr-qc] .
  130. L. E. Kidder, M. A. Scheel, S. A. Teukolsky, E. D. Carlson,  and G. B. Cook, “Black hole evolution by spectral methods,” Phys. Rev. D 62, 084032 (2000), arXiv:gr-qc/0005056 .
  131. P. Grandclement and J. Novak, “Spectral methods for numerical relativity,” Living Rev. Rel. 12, 1 (2009), arXiv:0706.2286 [gr-qc] .
  132. J. P. Boyd, ‘‘The rate of convergence of chebyshev polynomials for functions which have asymptotic power series about one endpoint,” Mathematics of Computation 37, 189–195 (1981).
  133. N. J. Higham, D. S. Mackey, F. Tisseur,  and S. D. Garvey, “Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems,” International Journal for Numerical Methods in Engineering 73, 344–360 (2008), https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2076 .
  134. F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Review 43, 235–286 (2001).
  135. H.-Y. Fan, W.-W. Lin,  and P. Van Dooren, “Normwise scaling of second order polynomial matrices,” SIAM Journal on Matrix Analysis and Applications 26, 252–256 (2004), https://doi.org/10.1137/S0895479803434914 .
  136. D. Kressner and I. Šain Glibić, “Singular quadratic eigenvalue problems: Linearization and weak condition numbers,” arXiv e-prints , arXiv:2204.07424 (2022), arXiv:2204.07424 [math.NA] .
  137. E. W. Leaver, “An Analytic representation for the quasi normal modes of Kerr black holes,” Proc. Roy. Soc. Lond. A 402, 285–298 (1985b).
  138. H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang,  and Y. Chen, “Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation,” Phys. Rev. D 86, 104006 (2012), arXiv:1207.4253 [gr-qc] .
  139. Z. Mark, H. Yang, A. Zimmerman,  and Y. Chen, “The Eikonal Quasinormal Modes of Kerr-Newman Black Holes,” in APS April Meeting Abstracts, APS Meeting Abstracts, Vol. 2015 (2015) p. Y7.001.
  140. V. Ferrari and B. Mashhoon, “New approach to the quasinormal modes of a black hole,” Phys. Rev. D 30, 295–304 (1984).
  141. V. Cardoso, A. S. Miranda, E. Berti, H. Witek,  and V. T. Zanchin, “Geodesic stability, Lyapunov exponents and quasinormal modes,” Phys. Rev. D 79, 064016 (2009), arXiv:0812.1806 [hep-th] .
  142. E. Berti, V. Cardoso,  and A. O. Starinets, “Quasinormal modes of black holes and black branes,” Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
  143. A. Z. Petrov, “The Classification of spaces defining gravitational fields,” Gen. Rel. Grav. 32, 1661–1663 (2000).
  144. https://github.com/pratikwagle/Quasinormal-modes-of-slowly-rotating-black-holes-in-dynamical-Chern-Simons-gravity.git.
  145. D. Li, P. Wagle, Y. Chen,  and N. Yunes, “Perturbations of spinning black holes beyond General Relativity: Modified Teukolsky equation,”   (2022b), arXiv:2206.10652 [gr-qc] .
  146. S. Olver and A. Townsend, “A practical framework for infinite-dimensional linear algebra,” in Proceedings of the 1st Workshop for High Performance Technical Computing in Dynamic Languages – HPTCDL ‘14 (IEEE, 2014).
  147. P. L. Chrzanowski, ‘‘Vector Potential and Metric Perturbations of a Rotating Black Hole,” Phys. Rev. D 11, 2042–2062 (1975b).
  148. L. S. Kegeles and J. M. Cohen, “Constructive procedure for perturbations of spacetimes,” Physical Review D 19, 1641–1664 (1979).
  149. N. Yunes and J. A. González, “Metric of a tidally perturbed spinning black hole,” Phys. Rev. D 73, 024010 (2006).
  150. F.-L. Lin and S. Takeuchi, “Hawking flux from a black hole with nonlinear supertranslation hair,” Phys. Rev. D 102, 044004 (2020), arXiv:2004.07474 [hep-th] .
  151. A. Sullivan, N. Yunes,  and T. P. Sotiriou, “Numerical black hole solutions in modified gravity theories: Spherical symmetry case,” Phys. Rev. D 101, 044024 (2020), arXiv:1903.02624 [gr-qc] .
  152. A. Sullivan, N. Yunes,  and T. P. Sotiriou, “Numerical black hole solutions in modified gravity theories: Axial symmetry case,” Phys. Rev. D 103, 124058 (2021), arXiv:2009.10614 [gr-qc] .
  153. P. G. S. Fernandes and D. J. Mulryne, “A new approach and code for spinning black holes in modified gravity,”   (2022), arXiv:2212.07293 [gr-qc] .
  154. O. J. C. Dias, T. Ishii, K. Murata, J. E. Santos,  and B. Way, “Superradiance and black resonator strings encounter helical black strings,”   (2023a), arXiv:2302.09085 [gr-qc] .
  155. W. D. Biggs and J. E. Santos, “Black tunnels and hammocks,” JHEP 11, 021 (2022), arXiv:2207.14306 [hep-th] .
  156. M. Ho-Yeuk Cheung, K. Destounis, R. Panosso Macedo, E. Berti,  and V. Cardoso, “Destabilizing the Fundamental Mode of Black Holes: The Elephant and the Flea,” arXiv e-prints , arXiv:2111.05415 (2021), arXiv:2111.05415 [gr-qc] .
  157. K. Destounis, R. Panosso Macedo, E. Berti, V. Cardoso,  and J. L. Jaramillo, “Pseudospectrum of Reissner-Nordström black holes: quasinormal mode instability and universality,” arXiv e-prints , arXiv:2107.09673 (2021), arXiv:2107.09673 [gr-qc] .
  158. J. L. Jaramillo, R. P. Macedo,  and L. A. Sheikh, “Pseudospectrum and Black Hole Quasinormal Mode Instability,” Physical Review X 11, 031003 (2021), arXiv:2004.06434 [gr-qc] .
  159. J. L. Jaramillo, R. P. Macedo,  and L. A. Sheikh, “Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability,” Phys. Rev. Lett.  128, 211102 (2022), arXiv:2105.03451 [gr-qc] .
  160. M. Maggiore, Gravitational waves, 1st ed. (Oxford University Press, Oxford, 2008).
  161. C. Meyer, Matrix Analysis and Applied Linear Algebra, Other Titles in Applied Mathematics (Society for Industrial and Applied Mathematics, 2000).
Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.